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SYNTHESIS OF OSCILLATING
ADAPTIVE FEEDBACK SYSTEMS

Abstract--It has been known for many years that insertion
of certain types of nonlinear elements in the forward
loop of a feedback system will produce a limit cycle and
give the system the laudable property of zero sensitivity
to plant gain changes. Some such systems have been built
and tested, but no genuine synthesis theory has appeared.
In this paper a synthesis theory is developed which
allows system design to proceed from practical specifi-
cations on system command and/or disturbance response to
a design which is very nearly optimal in terms of feedback
sensor noise effects. The approach taken is to replace
the nonlinear element by a mean square error minimizing
approximation (dual-input describing function), and then
use linear frequency domain synthesis techniques subject
to additional constraints imposed by the limit cycle and
the approximator. Synthesis techniques are also devel-
oped for a similar system using an externally excited
oscillating signal with the above approach.

The results, to a large extent, remove the design of
" the systems considered from the realm of simulation and
experimentation, permitting true synthesis and the opti-

mization that accompanies it.
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CHAPTRER T
PRELIMINARY BACKGROUND FOR OSCILLATING

SYSTEM DESIGN

1.1 Introdugtion

The limit ecycling or self-oscillating adaptive sys-
tem (S0AS) has appeared in the literature several times

over the preceding decade and pefore'1™®1 .  1ndeed one

[7]'(externally excited

version of an oscillating system
and somewhat different from those in this paper, but

with the same adaptive philosophy) was produced by
Minneapolis-Honeywell and successfully flight tested in
the F-94C aircraft in the role of pitch rate controller,
and separately in the role of pitch attitude controller.
An oscillating system was also used on the X-15
aircraft[s]. The adaptive properties of oscillating sys-
tems have thus been proven to have useful practical appli-
cation. In fact, out of many adaptive schemes that have
been investigated, the oscillating system is one of few
that have been shown to have practical application to
systems where there is large plant parameter uncertainty
or variation. The primary attractiveness of oscillating
systems arises from their inherent zero sensitivity to

plant gain factor changes. Even so, as pointed out in

[6], a careful study must be made to determine whether,



in a given problem, a proposed oscillating system is
indeed superior to a purely linear system.

Noticably absent from the literature, however, are
specific synthesis techniques. Rather, the existing
theory has been presented on a largely qualitative basis
and actual hardware design entails much experimentation
and simulation. Synthesis techniques are needed that
permit the designer to proceed from a realistic set of
specifications through a step by step design procedure
which insures that these specifications are met, while
optimizing in some sense over the free parameters. In
addition, the designer should be able to see any trade-
offs involved in the synthesis steps, and to succinctly
determine what advantages his design has over other
possible designs, e.g., a linear design.

In this paper a systematic synthesis procedure is
presented. The criterion for optimization adopted is
to minimize the effect of output sensor noise at the
plant input (or the system output). Rather broad system
performance specifications are assumed, and from these
a design that is quite close to optimum is developed,
The systematic procedure for approaching this nearly
optimum design is given and at each step the designer has
a good "feel" for what his chosen degree of optimization
is costing in terms of system complexity.

In Chapter I we first consider the class of non-

linear elements that are suitable for oscillating systems,



how these elements will be mathematically described in
synthesis, and the constraints imposed by this descrip-
tion. Next, a detailed statement of the synthesis
problem and the type of specifications to be satisfied
is given. Finally, the criterion for optimizing the

"oscillating system design is discussed.

1.2 Description of the Nonlinear Element jin an

" QOscillating System

In the following, some basic properties of a class
of nonlinearities will be enumerated and the synthesis
theory of this paper will then apply to the class of non-
linear elements possessing these properties. The multi-
ple-input describing function is used for analysis. The
multiple-input describing function has been treated ra-
ther thoroughly and elegantly by Gelb and Vander Veldelg],
and the abbreviated derivation below follows that work
closely.

The nonlinearity in Fig. 1.1 has input x(t) com-
posed of three known signal types. We shall use in |
place of the nonlinear element N a quasi-linear approxi-
mator for each of the signal components and require that

the approximators be such that the total mean squared

error
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Ble?(8)] = Bl(y(t) ~ 9(t))2]

be minimized. By quasi-linear it is meant that for a
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Figure 1.1 Representation of nonlinear element
for derivation of multiple-input describing
function.
fixed input signal each of the hi(t) in Fig. 1.1 per-~
form as a linear system to the particular signal type for
which it is derived, however, an hi may depend on some
parameters of its input signal type, e.g., magnitude,
and therefore is not truly linear. We shall consider
only time-invariant N and stationary inputs x(t) so
the resultant hi are thus time-invariant. Forming the
error, minimizing via the calculus of variations, and
requiring that the input signals be statistically inde-

pendent, the following decoupled set of equations in hi



h, (8YR. (t-T)d: = R (ty ; T > 0. {1.1)
,ﬁo . %1 Yy -

In this equation R (1) is the autocorrelation for
i
'input x,(t) and Ryw (t) 1is the cross-correlation be-
-— ‘i

tween nonlinearity output y({t) and input component

Xi(t). Eg. 1.1 has identically the form of the Wiener-

Hopf integral of linear mean square filtering theory.
Letting xo(t) = A sin(wot+8) where 6 is the

random variable distributed uniformly over [0,2w] radians

gives R (1) = %Azcos w,T. Then
o

af®
5 ho(t)coslwo(t—T)]dt =

P —_

A ® . ® .
E—écosmozg;ho(t)coswotdt + 51nwotg;ho(t)51nwotdt.. (1.2)

v -

RYXO(T) = Ely(t)A sinlu_(t-1)+6]] = AE[y (0) sin[6-w_1]] =

A cosw T Ely(0)sin®] - Asinwor E[y(0)cos8]. Eguating the

last expression to (1.2) for all 1T > 0 vyields

nj;hc(t)coswotdt = 2 E[y(0)sino] (1.3a)
oo - ~ 2 :
d[;ho(t)51nmotdt = - Elv(0)cosB]. (1.3b)

These equations are satisfied by
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E!ﬂ

ho(t) = %Eé[y(ﬂ)sinﬁ]&(t) + = E{y{@)cose]é(t) ;  (1l.4a)
L o) __.ll

or upon taking the Fourier transform

No = Ho(jwo) = %lF[y(O)sine] + jE[y(O)cosBlj. (1.4b)

N, is the describing function for the sinuscidal compo-
nent of input at frequency W, . If the total input
x(t) 1is taken to be a single sinusoid in computing No'
(1.4b) yields the more conventional describing function
obtained using harmonic analysis of y(t). The expres-
sion here is wvalid for the sinusoidal component at w

of any stationary, but otherwise arbitrary, input pro-
vided the sinusoidal component and the remainder of the
input are independent. If there are, for example, two
sinusoidal components at different frequencies W and
Wy the describing function for each may be obtained
from (1.4 by two separate calculations. The two gains
thus obtained are known as the two sinusoid input de-
scribing function (TSIDF). N, has quite simple form,
being a complex gain, but calculation of tﬁe expectations
in (1.4) is not in general simple. It is shown in [9]
that NO is real for static and single-valued non-

linearities.

Taking xf(t) = b, a constant, gives R, (1) = b2
£

and. Ryx (1) = bE[y(t)] = bE[y(0)]. Thus using {(1.1)
f

again



T revas - Blv(03]
j,hf(»_)d-—m-b -, (1.5)
le]
which is satisfied by
he(e) = 2L (g (1.6a)

and this represents a pure gain in the frequency domain,

viz.,

w, = (O] (1.6b)

The nonlinearity must have no constant output component
when there is no constant input (static nonlinearities

must be odd) in order that N be finite as b -+ 0,

£
This condition is always assumed in subsequent discussion.

If the input to N is restricted to be the sum of a
sinusoid plvs a constant signal, the two gains NO . Nf

are known as the dual-input describing function (DIDF).

For use in an oscillating system we shall require that

N, = MO/A (1.7a)

12

N Mf/A (1.7b)

for A/[bl > 1 by a sufficient margih, where Mo ' Mf
do not depend on x(t). Actually, we require even more.
Instead of just a constant we shall allow xf(t) to be

some transient function of time, therefore not stationary,

and require it to be slow and small with respect to the
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sinusoidal input in the following sense.

max .
e lxgt)] < A /o (1.8a)
U.)b "i (L)O/’B ¢ (1.8b)
- where Wy is the bandwidth of Xf(jm) and Ay is the

minimum value that A can assume in the given applica-
tion. If for a given nonlinearity there exists «,8
such that when (1.8) holds, then (1.7) gives a suffi-
ciently good approximation to the DIDF with u,B,Mb, and
Mg dependent only on the physical parameters of the non-
linearity, i.e., independent of input provided the input
has the assumed form, then such a nonlinearity is a
candidate for use in an oscillating system. It will be
éeen that (1.7) is necessary to obtain the zero gain
sensitivity property in oscillating systems. It is
stated in [10] that « > 3 and B > 3 give less than 5%
error in the approximations of (1.7) for an ideal relay
when xf{t} is a sinusoid and this reference indicates
these values hold closely for a wide range of common
nonlinearities. The error for any given nonlinearity
can be obtained by expanding the TSIDF, obtained from
(1.4b), and DIDF in Taylor series in b/A with b as
the bias-magﬁitude or the magnitude of the lower fre-
quency sinusoid.

It may appear that by now we have restricted our-

selves to a nearly empty class of nonlinearities, but



this is not the case. In order that (1.7a) hold it is
seen that N musi have a saturating property, or for
large A the output sinusoidal component must approach
IMQI in magnitude, independent of A, 1In [I11] it is
shown that for all odd, static, and single-valued non-
" linearities, if the input is the sum of two sinusoids
x(t) = xf(t) + xo(t) = bcoswbt + Acoswot with wo/wb

irrational then

A A (3,0)
lim N_(A,b) = N_(A,0) + 5 —tre (1.9)
v o 2 T an

The limit holds also for W, = 0, i.e., when xf(t) = b,
Of course dNO/dA must exist. The above limit has been
called the incremental input describing function (IIDF).
Applying this limit to the right side of (l.7a) we get
that Nf o N0/2 = MO/ZA when Xe is a sufficiently
small constant. Thus we can conclude that every odd,
saturating, static, and single-valued nonlinearity is in
the class of candidates for oscillating systems. In a
practical design situation one must of course determine
that (1.7) is a satisfactory approximation with accept-
able values of o and £. We remark also that there
may be some lower bound set by the nonlinearity on Al
in (1.8a), e.g., for a saturation nonlinearity Al must
be large enough to cause saturation. The above in no

way limits the possible nonlinearities that may prove

satisfactory for an oscillating system. Smisek[16] has
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studied a dynamic nonlinearity for which M~ is complex

with phase lead, and used this element in an SOAS simu-
lation. The above conditions, viz., nonlinearities that
are odd, saturating, static, single-valued, and such
that dNO/dA is finite are theoretically sufficient for
(1.7} to hold for some o and B, but they are not
necessary.

The IIDF has another useful application. Since it
holds for any w, not rationally related to w_ it can be
used to predict stability of the forced signal loop
transmission for small perturbations. For large signal
stability the TSIDF can be used.

Next a random process input x.(t) to the nonlinear

element is considered. For this input Ryx (1) =
r
E[y(t)xr(t-T)] and Eg. 1.1 becomes
wihhr(t)Rx (t-1)dt = Ryx (1): T > 0. (1.10)
o r r
For the general nonlinearity RYX (t) is guite difficult
T

to obtain, and even if it were known the snlution of
(1L.10) is not apparent except in special cases, e.g., if
the Fourie; transform of Ryx (t) is known and rational,
the Wiener-Hopf type integralrcan be solved by spectral
factorization. However, as shown in [9], for the special

case of gaussian zero mean zr(t) (if it is not zero

mean the constant component may be included in X.), and



for static single-valued nonlinearities only, RVK (1) =
-.(r

R (T)E[y(@)xr(O)]/GZ, 0 1is the standard deviation of
r

the process amplitude distribution. In this case (1.10}

is seen to be satisfied by

h,(t) = Ely(0)x_(0)16(t)/0° (1.11a)
and

N
T

]

E[y(O)xr(O)]/02 X (1.11b)

Thus the random input describing function (RIDF) com-
ponent is a pure gain under the stated conditions.
'~ Finally it is shown in [9] that with input =x(t) =
bcoswbt + Acoswot + xr(t), an odd single-valued non-

linearity, and X gaussian, that

lim Nf(A,b,O) = Nr(A,O,G) . (1.12)
b+0
Eq. 1.12 holds when w = 0 as well. This suggests that

for small inputs’ xf(t) the mean square error minimizing
quasi-linear approximator is a gain independent of the
waveshape of xf(t). It is found also that if in addi-

tion to (1.8)
g < A /0 {1.13)

then

=
R
=
m
~
=]

(1.14)
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More importantly, we want (1.7) to hold for forced
ahd oscillating signals when there is alsoc a noise input
to N, i.e., the forced and ecscillating signal components
of the three input describing function, Nf(A,b,o)' and
NO(A,b,c) must approach the asymptotic values of (1.7).
‘This, of course, occurs when o is vénishingly small. A
check for two common nonlinearities, ideal relay and
saturation, indicates that (1.7) holds for . = a > 3.

The nonlinearity N will be used in a feedback
system (see Fig. 1.2). The output of N will always be
non-gaussian {(since only saturating nonlinearities are
used) and in this structure the output is fed back so that
the input to N is not in general gaussian. A linear
System with gaussian input produces a gaussian output.fl?l
Also, it has been empirically observed[12’17] that when a
non-gaussian signal is passed through a linear bandpass
filter the output tends to a gaussian distribution (this
can be proved for non-gaussian white noise or for vanish-
ing bandwidth). Further, the RIDF has exhibited good
agreement with experimental measurements[l3]obtained from
a feedback structure using two nonlinearities of the type
considered here, viz., an ideal relay and a relay with
dead zone. Therefore we shall assume that the noise input
to N is reasonably well approximated by a gaussian dis-
tribution.

In the development of subsequent synthesis theory the

nonlinear element will be represented by the guasi-linear
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approximations on the right of Eg. 1.7 and (1.8) will be
taken as a specification to insure the validity of this
approximation. Eg. 1.13 will not be taken as a specifi-
cation because it is not possible to simultaneously
achieve this and the feedback specifications that are
‘assumed in the following section. Rather, for any com-
pleted design the maximum tolerable noise input to the
nonlinearity can be calculated and the describing func-

tion holds as long as this limit is respected,

1.3 ©Statement of the Design Problem

The system structure of Fig. 1.2 will be assumed
throughout. P is the plant transfer function which may
contain varying or uncertain parameters. The designer
has access to its input and output only. The remaining
transfer functions are compensations to be synthesized,
with the exception of N, which is a nonlinear element of
thg type discussed in the preceding section. A sensor
with unity transfer function which introduces noise with
power spectrum N is assumed. D(s) is a disturbance
input and A, 1s the applied excitation, present only in
the case of an externally excited oscillating system

(EEAS) .



R(s] F = Gy/H X (s}

Figure 1.2 Oscillating system two degree-of-freedom
feedback structure.

The feedback system in Fig. 1.2 is a two degree-of-
freedom structure, so called because there are two
signals that can be independently processed and used to
control the plant output, viz., the command input R(s)
and the system output C(s). For linear systems, all two
degree-of-freedom structures are equivalent with respect
to the attainable benefits of feedback (sensitivity to
plant parameters and disturbance attenuation), and with
respect to the effect of sensor noise 1 on the -

plant,[lal

Since we replace N by a guasi-linear
approximator, all other two degree-of-freedom structures
are equivalent to Fig. 1.2 in the above respect provided
two constraints imposed by the nonlinear element are
cbserved. First, the nonlinear element must be in the
forward path in series with the plant to provide the zero
gain sensitivity property. Second, the nonlinear element

must be embedded between two compensations to allow for

simultaneously satisfying the quasi-linearity constraints



and a Jlimit on output oscillation maanitude,

The oscillating signal component at the input of N
in Fig. 1.2 will be taken as sinusoidal so the usual
filter hypothesis of describing function theory must be
invoked. 1In particular the output from N will be a
-periodic signal with fundamental freguency W, and
GleP must filter out higher harmonics well enough that
they may be neglected at the input to N.

The svnthesis problem is to design the compensa-
tion functions in Fig. 1.2 so that the system output
always satisfies given specifications in spite of bounded
ignorance or variation of plant parameters and distur-
bance inputs. Some a priori knowledge of command and
disturbance inputs must of course be assumed.

Below we give a statement of the specifications, in
their most general form, that the subsequent synthesis
theory is capable of dealing with. In any particular

design example one or more of these may be absent.

Specificationg

NMonlinear Flement

The nonlinear element N is taken to be adequatelwv

characterized by the DIDF

i
[0

MO/A (1.15a)

Ne = Mf/A {1.15b)

when guasi-linearity constraints



16

M
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[

|x.(t)] < a/o (L.16a)
vy < 030.,/[3 {L.16bh)

are satisfied. Some specific nonlinear element must of
course be selected before a numerical design can be

Enown

o’
3
jo N
o]
)
i
D

or can be

execnted, so that MO,M
determined by the designer. xf(t) is the forced signal
component of input to N arising from command or dis-

turbance inputs. is the bandwidth of Xf(jw). A is

b
the magnitude of the oscillating signal input to N.

Eg. 1.16 must hold for all possible and A as the

Xg
plant and input vary. so extremes will be treated in syn-
thesis. As noted previously there may be a lower bound
on A, e.g., a saturation nonlinearity must be driven
well into saturation before (1.15) can hold. Also, it
was noted in Sect. 1.2 from [10] that « > 3, B >3 gives
5% accuracy for the approximation to obtain (1.15) for
séme nonlinearities when Xe is a sinusoid with fre-
gquency in the closed interval [O,mb]. Since X con-
sidered here will be a transient signal, £ may depend

to some extent upon its waveshape. Ultimately the choice
of o and g is left to the designer, who must consider
a particular nonlinearity and the nature of the forced
signals in his system. It will be seen in design examples

presented later that in practical systems where the SOAS

or EEAS is most appropriate, that wo/wb is forced by



other design constraints to be rather large,

In the subsequent synthesis theory the plant is
assumed to be a rational transform with known structure,
written as

w e W

P(s,w) = K(W)Ph(s,w); (1.17)
Riw) ¢ [KHKz] .

w 1is a vector of all plant parameters bounded by the

set W and K(w) is the high fregquency gain factor,

. e min

i.e., P{(s,w) ~ K(w)/s~ as |s| » =, Ky = e K(W)
max

and K2 = wel K(w). The plant parameters may have any

value within the bounding éet, or may vary slowly within
this set. By "slowly” it is meant that the change in any
parameter over the time period required to process an
input command or disturbance is negligible. The feed-
bﬁck may be quite effective for fast parameter variations

also,[lgl

but since time-invariant synthesis theory is
used herein the results are valid for slow variations,

and fast variations are not considered.

Extreme Input
The extreme command or disturbance input that the
system is required to accept must be specified. By

extreme, we mean the forcing signal input that most nearly

causes the system to violate the quasi~linearity
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Constraints. This input denoted by Re(S) (oha De(s)
will be the largest magniftude and/or the fastest input
to be applied to the system. For example, if the command
inputs are steps, then Re(s) = qr/s where q, Trepre-

sents the largest step.

The transfer function for commands in Fig. 1.2 is
denoted by T(s) = Cf(s)/R(s) where Cf(s) is the forced
signal component of output. We assume that a nominal
transfer function Tn is specified alonag with bounds on
permissible magnitude variation Aln|T(jw)| as a function
of w. The nominal response and sensitivity may ini-
tially be given in the time domain as cn(t) and an
envelope of permissible responses, e.g., gl(t) < cf(t) <
gz(t), where cf(t) is the response due to a specific
command input, say a step. Such specifications may be
translated approximately to the frequency domain as
discussed in [22].

Although the oscillating systems treated herein

may be used for nonminimum phase[201

designs, there is
not available at present a complete synthesis theory to
satisfy sensitivity specifications of the above nature,
i.e., regarding time response. For this reason we
assume T is minimum phase and since T{jw) in this

case is completely determined by IT(jw)|[2l] we treat

only the magnitude in the design procedure for satisfying
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sensitivity specifications. However, if one is presented
with specifications on both magnitude and angle varia-
tion for T(jw), these may be handled with the synthesis

method presented.

.Disturbance Response

In this paper the disturbance D(s) of Fig. 1.2 is
treated as a deterministic input (a random input with
sufficient restrictions could be treated using the RIDF).

Specifications are assumed given as an upper bound on the

disturbance transmission magnitude ]TD(jm)l =

|CD(jw)/D(jw) . For minimum phazse systems such a bound

can be cbtained approximately from a time domain speci-

fication of the form |cd{t)| < g3(t) provided the form

of the disturbance inputs is known.[22]
When command transmission sensitivity dominates in

a design, but nevertheless disturbance inputs exist, it

is usually desirable to place a damping constraint on the

disturbance response. Even thouch T may not be

D
specified over an entire freguency band, we require that
it have no significantly underdamped poles. Since

Tp = 1/(1+Lf) where L. = N.G,G,» 1is the forced signal

loop transmission in Fig. 1.2, we require

Lf(jw)
1+Lf(jw)

< 2 ;Vw. (1.18)

This places an approximate constraint on the complex pole

pair nearest to the jw axis in 1/(1+Lf),r and thus
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Joosely limits settling time and overshoot of cd(t)°
Also, one may verify on the Nichols chart that (1.18)

establishes minimum gain and phase margins.

Qutput Oscillation Constraini

the magnitude of the oscililating

(1]
n
&)
i
(9]
Q
o

[4)]
L3
hl
m
|_l
o
Ta)

b
signal component of signal at some point in the system.
In Fig. 1.2 we have a sinusoid of magnitude A at the
input to N. For this sinusoid N is represented by
gain MO/A {(Eg. 1.15a), so the output from N has
magnitude |MO|° Thus specifying that the system output

have magnitude less than m, the constraint is written

| m oG (JUIEGu )X P (Gu )| < m, (1.19)
. max .
where ]Kmth(]wo)l = WewlP(jwo)I.

In the S0AS the freguency of oscillation g
occurs at the frequency of 180° phase lag in the loop
transmission. This will vary some due to inevitable
inaccuracies in the loop compensation elements. In the
EEAS we must have a generator that cannot be perfect.
Thus, let wé be the center or averace value of W,
The variation due to the above sources is parameterized

by Yo where

L] 4 _—
W, € [wO/YC,wO YC] = RC . (1.20)
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Ye is assumed known as a specifircation in the synthesis

procedure. WNote that w, Mmay vary even more due to

Plant parameter variations, but this component is dealt

with separately in the design.

Limit Cycle Quenching Gain Margin

Let LO = NoGlGZP from Fig. 1.2 be the open-loop
transmission for the oscillating signal component. In
the EEAS it will be necessary to quench the natural limit

cycle of the system. As will be shown later, this

introduces a gain margin reqguirement on Lo written

L, Gu) | < e (1.21)
where W satisfies iLO(jw ) = =180°. p will depend

on the nonlinear element that is used. This specifica-
tion does not apply to the SOAS.

Aside from the optimizing criterion, which is
treated in the next section, the above completes a state-
ment of design specifications and constraints. Admittedly
some of the above are rather broad in nature and some
approximations are required. However, they represent a
reasonable compromise between the desire to be as analy-
tical as possible on the one hand, and on the other, to

get results that have practical application.
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1.4 Optimization Criterion

The specifications of the preceding section will be
taken as inviolate, but upon quasi-linearization of the
system in Fig. 1.2 these can be satisfied by an unlimited
number of designs provided the plant is minimum phase.
Therefore it is desirable to use this reservoir of de-
sign freedom to optimize in some fashion. In particular,
the rms noise power at the plant input (or output) due to
sensor noise input n will be minimized, as shown below.

As explained in Sect. 1.2 the RIDF, Nr = Mr/A' for
odd, static, and single-valued nonlinearities with
gaussian inputs is a pure gain. Assuming N in this
class, the sensor noise n in Fig. 1.2 sees an equiva-
lent linear loop transmission Lr = N _G,G,P. This is

r’l1
related to L, =N_G G,P, the oscillating signal loop

o1
transmission, by the gain factor NO/Nr (from Sect. 1.2
NO/Nr z No/Nf = 2 for some common nonlinearities) so we
can equivalently discuss optimization of L, which is
more closely related to the specifications. Letting e
denote the excess of poles over zeros in L,r 2 number
which of course remains fixed while comparing the quality
of any two designs, then at high frequencies

K
lLo(jw)l - —z as o > o, (1.22)
0

The optimum Lo will be taken as the one with minimum

K, This criterion has been used previously for linear

systems.[22’23]
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In Pig. 1.2 the noise transmission to the plant
input is
~L

N S (1.23)
" op(i+L))

. Using Lr = QP we see that

1 .
sEay! ¢l Gw] >
[T, (Gu) | = (1.24)

lotie) | 5 L G| <1 .

n 1is the power density spectrum of the sensor noise
. s + . -, =
input, so writing n(w) = n (jw)n {-jw) and Tn =
Tn(-jm), the mean square noise at the plant input is

S N B S
o, = Esz nn TnTndw . (1.25)
With the aid of Parseval's formula[zﬁl, this may also be

written
ol = ﬁz;f "ot PPae (1.26)

Let us temporarily take n as white gaussian noise.

In a nontrivial oscillating system design problem it
will be seen subsequently that the oscillating frequency
W, is constrained to fall above some lower limit. For
the SOAS the magnitude of L is constrained by
(Lo(jmo) = «~1} the choice of W, . A similar constfaint

is later shown for the EEAS arising from ]Lo(jmﬂ)| < p.



Approximately over the frequency range (Dawn) the
designer has little control over noise transmission Tﬂ
in (1.24). First, because at low freguencies the sensi-
tivity and disturbance attenvation specifications
generally dictate some loop transmission magnitude
'|Lr(jw)|'> 1 and the designer of course has no control
over P. Above this frequency range but still below

w L or L, cannot be reduced significantly because of

o' To

the magnitude constraint at Ww,. It is only beyond Wy
that L, can be reduced with a steep slope and the
accompanying large phase lag. In Fig. 1.3a we show a
hypothetical frequency response for P. With the
oscillating freguency at W, as shown, the resultant
oscillating loop transmission L is shown along with
NOQa/Nr, These are in decibles vs. log w. The noise
power integral (1.25) is on an arithmetic scale so the
mean square noise power at the plant input is propor-
tional to the area under the IQaI curve on the arith-
metic scale of Fig. 1.3b. Choosing a smaller oscillating
frequency, say mo/z, the new 0 and L, are shown

and noise power is now proportional to the area under the
dashed [Qb[ curve of Fig. 1.3b. In the frequency region
where ILr(jm)[ < 1, but |Lr(jm)| > |P{jw)|, the noise
is amplified by the loop compensation @ (Eq. 1.24),

and from Fig. 1.3a [Q(jw)| becomes larger over a larger

frequency span as Wy is increased. Clearly, we should

design for the smallest Wy possible, and because noise
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Figure 1.3 Illustration of noise power reduction with
loop transmission bandwidth reduction.
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power is computed on an arithmetic scale, even a frac-
tion of an octave improvement in W, may give a signi-
ficant improvement.

Now suppose the noise is not white, but has finite
bandwidth. If the noise power is concentrated in the
-frequency range above w®w_ then the design is still

r

optimized by obtaining minimum w,, and hence K_ in
Eg. 1.22, This is often the case in control systems
since they generally have small bandwidths and it is
relatively easy to obtain sensors that are free of very
low freguency noise. It will be seen in Chapter III
that W is minimzed by making |L0(jm)| as small as
specifications permit over the low frequency range

(w < mo), Thus, even if the input noise spectrum is con-
centrated in a neighborhood of W, there is probably
little improvement possible over the above optimization
scheme,

The above optimization criterion was based on the
nonlinearity having a pure gain RIDF, however, it is
reasonable to expect that it may also produce an optimum
design, at least for the case of white noise, for a
broa@er c¢lass of nonlinearities.

In summary, as eabh design specification is con-
sidered the synthesis theory will be developed with the
goal of minimizing oscillating frequency W (ww for

the EEAS) which in turn yields minimum K, and rms noise

power at the plant input.



CERDPTSR IX

SOAS SYNTHESIS FOR SIMULTANEOUSLY SATISFYING

QUASI-LINEARITY AND OUTPUT LIMIT CYCLE CONSTRAINTS

2.1 Synthesis of an Elementary SOAS.

In this section the synthesis of a simple SOAS is
described. The SOAS adaptive property of zero sensitiv-
ity to plant gain changes is shown as well as the basic
cost in terms of loop transmission bandwidth regquired to
obtain this property. It is found that three basic fac-
tors are the determinants of the loop transmission band-
width, and that they all influence the bandwidth with
equal weight. These three factors are the spread of
plant gain variation, the maximum input that the system
is required to process, and the maximum limit cycle
méghitude permitted at the system output.

The structure shown in Fig. 2.1 is used with N a

nonlinear element characterized by the DIDF components

N
o}

MO/A (2.1a)

Ng = Mf/A (2.1b)

when guasi-linearity constraints

max

e 1% 8] < A /0 (2.23)

w, < w /B (2.2b)

Ll
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are satistiied. Mo’ Mf, o, and B are parameters of

N, A, is the minimum limit cycle magnitude input to N,

and xf(t) is the forced signal input at N having

bandwidth wb,

o

Figure 2.1 SOAS structure.

In Fig. 2.1 P is the given plant which the
designer cannot alter, and containing uncertainty in its
gain factor only, say P = Kp, = ¥/[s(s+a)] with the
gain factor uncertainty bounded by K ¢ [Kl’K2] and a
known. The remaining elements in the structure are com-
pensations to be obtained in the synthesis procedure.

It is assumed that no disturbances are acting on the
system,

The transfer function is specified, and for illus-
tration suppose it is T(s) = waz/(s+wa)27 The limit
cycle component appearing in €, the system output, is
to have magnitude less than m, and let the extreme

input be a step R (s) = q,/s.



B
L0

Tt is necassary that the describing function Ne
be valid for the significant frequency components that
must appear in the system output, hence the oscillating
fregquency is constrained to be above the transfer func-
tion bandwidth by the ratio B of Eg. 2.2b. [T(jwm)| =

1/v3 gives w_ = V2=1), so

at

w, > Bmm = Bma(f?:ﬁl), (2.3)

The loop transmissions for oscillating and forced

signal components are respectively

M

_ . &)
L, = NJGyG,P = 5= G,G,¥P, (2.4a)
and
Mg
Le = NfGleP = 5 GIGZKPh . (2.4b)

L, has a valid linear transmission interpretation at
the oscillating freguency only and Le ig interpreted
as a linear transmission over (O,wO/B). Te sustain a

limit cycle in the system we must have Lo(jwo) = -1,

which yields from (2.4a)

2 = M6, (3u,)6, (Gu )Py Gu) | . (2.5)

The right side of (2.5) contains no uncertainty or vari-
ation so A/K must be constant and therefore can be

written A/K = Al/Kl° Putting this in (2.4b),
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Lp = - GlePh . (2.6)

which shows that the forced signal loop transmission
does not change with plant gain, i.e., for any change

. in plant gain K an exactly compensating change occurs

/ of Nf. Since T = FLf/(1+Lf) there is no

n 1/A

uncertainty related to the transfer function in this
design with only plant gain variation.

Similarly, the only uncertainty in the forcing
input to N, Xer arises from changes in the command

input R. Using the extreme input and the specified

transfer function, we write with the aid of Fig. 2.1,

R T AR T AR T
X = c = e = 1l e (2.7)

G2P MfKG2Ph thlePh

We are assuming H = 1 throuchout this section. The
design is carried out to insure that X satisfies
guasi-linearity constraints (2.2) using R, then for
all other R, Xe also satisfies these constraints.
Introducing the maximum magnitude limitation m on

output limit cycle gives, from Fig. 2.1,
IMOGz(jmo)KzPh(]wo)l <m . (2.8)

Solving {(2.7) for G, and substituting in (2.8),

X (jw ) M_K
e g (o JT(Gw )| . (2.9)
A M_K.m © © o
1 £l



The last inequality is entirely equivalent to (2.8),
but written in this form it provides some helpful in-
sight for choosing Xo» The xight side of (2.9) is com-
pletely given by specifications. The left side is
determined entirely by the choice of X r but this con-
" straint on X, is partly in the time domain and partly
in the frequency domain. This is seen by using equality
in (2.2a) to write |Xe(jw0)|/Al =
|2 (Gw )| /[6"3F]x_(£)|1. w_ is constrained by
e o t e o ’

W > me to be above the transfer function bandwidth so
lRe(jm)T(jw)l will be a decreasing function of « in
the range of permissible ®,- Since the objective is to
minimize w_ .we want to maximize lXe(jwo)|/Al at
fixed W e subject to the quasi-linearity constraints
(2.2) on X, - Observe that using R, = qr/s, the
right side of (2.9) contains the factor quZ/Klm' thus
for any fixed choice of X, the oscillating frequency
W increases or decreases with this factor. These
three specifications all influence the required loop
transmission bandwidth in the same fashion. This will
continue to be the case even in the most complex SOAS
designs.

The selection of X is discussed in some detail
in Appendix A, and it is seen there that if [xe(jw)l is

required to be a relatively smooth function of w, then
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[ 0
X, = x b (2.10)
s+w
o

is a good choice that also has the advantage of simplic-
ity. Of course X will have some constraints imposed
by the particular plant structure and input form.

Eq. 2.10 is for Type 1 plants (one pole at the origin)
and step inputs. Adopting (2.10) for X, gives
mixlxe(t)| = 9,4, and hence A; = og_w, . The deter-
mination of . and Wy will be discussed presently.

Using X, from (2.10) and 2 as above in Eg. 2.7,

1

the compensation G, is now

AR T o(s+w, YR T
Gy = H leep = TH KbP = . (2.11)
f1%e " h £f71°h
To obtain the constraint on O due to (2.8), G2
from (2.11) is substituted giving
IMOGz(ij]Ph(jwo)|
_ o . . \ m
= ZTITf.ﬁz.]MO(:|Loo+t,ub)Re(jmo)T(j(»o)| < f; . (2.12)

Since we must have W f-wo/B' the center quantity in
(2.12) is approximately independent of Wy s therefore
any @ < mo/B will not influence the w, satisfying
(2.12) . It is reasonable to give x,(t) a response time
comparable to that of the system output. Thus take N

near w, or w . If we take it at Wy = W the pole



of X, cancels one pele of T in G, (BEg. 2.11)

and thus simplifies G, -

Using the given specific form for ReT in (2.12),

o, M
ra o)

2
w !
Mle jmo(3m0+wa)

_m
Ky

IMOGZ(ij)Ph(ij)l = < (2.13)

The quantities of (2.13) are sketched in rFrig. 2.2 and
the minimum o due to this constraint jis labeled. The

larger

/- [MOGZ(jw)Ph(jm)l

Figure 2.2 Constraint on W, due to limitation
on output limit cycle.
of me, or the minimum w, that satisfies (2.13)
must be taken as the design value of Wy We can further

approximate in (2.13) using wy, < w, to get

%
IMo,KZqu
LUO > ma W ’ (2.14)
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which again shows the basic importance of the quantity
quz/Klm. An approximation equivalent to (2.14) is given
in [g]. One may observe in Fig. 2.2 that addition of
more poles to T, which then appear as poles of G,
(see Eg. 2.11), have a very beneficial effect on re-
" ducing UB,

Since no disturbances have been assumed for the
present design and there is no uncertainty in Py v
there is no gain-bandwidth requirement for loop trans-
mission Lf. Thus the only requirement for Gy is to
shape LO to establish the limit cycle at the proper
frequency. Finally, after Gl is selected, the pre-
filter F may be obtained directly from the relation

F = T(1+Lf)/Lf. The design procedure is next demon-

strated by a numerical example.

- Example
Specifications
Nonlinearity:
Ideal Relay N, = MO/A = AM/TA {(2.15a)
with output
level M, Nf = Mf/A = 2M/TA (2.15b)
Quasi-linearity max]xe(t)| <A/ 0 >3 (2.16a)
t .
Constraints wy < wO/B; B >3 (2.16b)
Transfer function:
2 2
T(s) = (6) "(15) (2.17)

(s+1) % (s+6) 2 (g+15) 2
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Plant:

K

P{s) =KF _(8)= ————0o
b s{s+1)

-

K e [KlyK?] = [1,100] {2.18)

Maximnm input:

R (s) = a /s = 10/s (2.19)

Maximom limit cycle output:
m= 0.1 {(2.20)
Desiagn

—nree T

The constraint on W due to the required band-

width of T is w, > Bu = 3(v2-1). Taking w

=1,
o

b

at one of the poles of T, and using xe in the form
of Eq. 2.10 yields

a

Xe = stw, Bl v (2.21)

Then A, = ogqw, = 39, giving from (2.7)
AlReT

£72 leeph

2 2
_ 30(6)°Q15)° _
= = MGy/2 . (2.22)

(s+6) % (s+15) 2

Applying the output limit cycle constraint,



MO!GZ(ij)Ph(ij)I

A

2 2
60(6) {55) 5 < L001 = L (2.23)
s{s+l) (s+6) “(s+15)“|. 2

I,
" The gquantities in (2.23) are plotted in Fig. 2.3 and
the minimum oscillating frequency is found to be
W, > 26.5 rps. To see the beneficial effect of extra
poles in T, note that if the two poles at -15 were
deleted the minimum oscillating frequency would be
37 rps as shown by the dashed segment on Fig. 2.3.

In the absence of disturbance inputs and parameter
uncertainty in Py there is no gain-bandwidth reguire-

ment for L.. The only specific requirement is that

. _ 1 _ } .
Lf(jwo) = 5 = Lo(jmo)/2. We choose the minimum
Wy = 26.5 rps and design Lf accordingly, making |Lf(jw)|

quite small for w < w, @as shown in Fig. 2.3. The

resultant rational loop transmission is

Lf f Lo/2

7.585x1012 (s+1)

= . (2.24)
S[{s242(.6)355+35%) (s2+2(.4) 605+602) | 2
Thus
oo Be ML
1 NszP KleGZPh
Al3.12x107[(s+1)(s+6)(s+15)]2
= . (2.25)

[(s%42(.6)358+35%) (s2+2.6(.4) 605+602) ]2
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Only the prefilter remains to complete the design.
Factoring the numerator of 1 + L_. the data in Table 2.1

is obtained. The prefilter is then obhtained

Poles Aexros
P 4 W P | [ W

.164|26.8 1
.813} 48,
.255| 60 !
.4681 67

| K, =1 K, = 7.585x10"2

Table 2.1%

Data for Lf/(1+Lf) for Le of Egq. 2.24
from
F = T(l+Lf)/Lf . (2.26)

Inspection of the data in Table 2.1 for Lf/(1+Lf) and
in Eq. 2.17 for T shows that F has 8 zeros and 7
poles which is not realizable. Additional far poles

must be added to T and therefore to Xe in Eq. 2.7.

*
For any rational function F(s), K0 and K_ are

defined by F(s) - Ko/sn as |s| + 0 and F(s) » Km/sm

as |s| > o,
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From Fig. 2.1 we can write (H = 1) X, = ReFGl/(l + Lf)
so Xe must always have the same excess of poles as
ReFG1 ( > 3 for step R). If such poles are added to
Xe at freguencies well above wy they will have negli-
gible effect on mixfxe(t)l and they will not alter the
‘calculation for minimum oscillating frequency in Eq. 2.23.
Thus we add complex pcle pairs to T and X, at 60 and
67 rps respectively which cancel the zeros of 1 + L, at

those locations. The resultant prefilter has parameters

as given in Table 2.2. Since H is

Poles Zeros

P [ w z " )
1 .164! 26.8
i .813 48.
1 “

6

6
15

15

K =1 - K = 4,9%107 7
O [+3]

Table 2.2. Farameters of
prefilter F.
being taken as unity this completes the design of all the
compensation blocks in Fig. 2.1 except for choosing the
two constants Al’ and the relay output level M. With
an ideal relay the design theory leaves these constants
completely arbitrary. For some other nonlinearities,

e.g., saturation, there will be a lower bound for Al



40

given in terms of the parameters of M_.. These constants

i

will in practice be chosen from consideration of signal
levels within a given system. q, was not given a value
either, however, we have used Al/qwa = a = 3 and taken

w, = 1, so q, is determined by the selection of A -

1 4 = T X o e
2 An Idealizaticn for Lowering

the S0AS Oscillation Frequency,

In the previous section the smallest possibie
oscillation frequency was obtained under the assumption
that X, was to be in somelsense a smooth function of w.
It was found that the most significant factor requiring
w, to be large was the combination of input magnitude
d,.r range of plant gain variation KZ/Kl' and the demand
for a small ocutput limit cycle component m, so that the

basic determinant of W, was the magnitude of the

guantity qu2/Klm' Recall the following equations

(BEgs. 2.7-9).
AlReT
X, = ——— (2.27)
KleGzPh
|M0G2(ij)Ph(jwo)| < W/K, . (2.28)

lxe(jwo)| S MOKZ

Al Mlem

[Re(ij)T(ij)I (2.29)

Egs.. 2.27 and 28 are obtained from Fig. 2.1 with H = 1,
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and (2.29) is obtained from substitution of C from

2
(2.27) into (2.28). Eqg. 2.29 shows that if one could
place large magnitude peaking in Xe(jw} at w . and
still maintain control of the time domain guasi-linearity

constraints, a significantly smaller w, may satisfy this

inequality. Recall the quasi-linearity constraints are
max
t [Xe(t)| < A /a (2.30a)
Wy < wO/B . (2.30b)

To provide for peaking in [Xe{jm)] a pair of under-

damped poles are introduced at w in such a way that

o
mixlxe(t)] can be simultaneously controlledEzs]. o (B)

is written

]

xe(t) xel(t) + xez(t)

-w, t ~tw_
L2
9,08 B + qub(l—l)e © cos[mot 1-77]. (2.31)

In the frequency domain

Xe(S) = Xel(s) + Xez(sf

0, N qwa(l—l)(s+cwo)
2

2
s+w +2Cw s+uw
b s 28 0 o}

Ht

Xel(s)/H(s) . (2.32)
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Solving for H  gives

524-2 ATV 2
o O

g = .{2.33)
A 52+[(h+l}iwo+(l—l)wb]s . mo[wo+(k—l)cwb]
A A
'With the above choice of Xe’ mixlxp(t)] = hqvwb can

be taken as close as desired to I, W, by taking A
sufficiently close to unity, while ¢ is independently
adjusted to make ll/H(jwo)|, and thus IXe(ij)I,r as
large as desired. This means that with the ideal X in
(2.32), (2.29} can be satisfied for any .. Therefore,

the bound on output limit cycle component (2.28) does not

constrain wo.

We prefer to treat the peaking compensation function
H as a separate function so in Eqg., 2.27 G2 is replaced

by G,H giving

X AR T
X, = el . le ) (2.34)
H K M G,HP,
and
AJRT
Xel = _— . (2.35)
KyMeGoPy

The function in (2.33) is the compensation H shown
at the output of N in Fig. 2.1 so the constraint on

Ooutput limit cycle from (2.27) is now replaced by

|MOG2(ij)H(ij)Ph(ij)| < m/K,. (2.36)
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It is undesirable to have the highly underdamped zeros
of H appearing in the loop transmigsions L, and Lg
sc 1/H 1is inserted at the nonlinearity input as shown

by Fig. 2.1. The following example demonstrates a

design using the ideal limit cycle filter H.

Example

Specifications

The specifications are the same as those in the
example of Sect. 2.1, Egs. 2.15 throucgh 20.
Design
The constraint on oscillating freguency due to
required transfer function bandwidth is, as in the
example of Sect. 2.1, w E_me = 3(/5;1),

o

X the low freguency dominant part of Xe

el’

is taken as

a_w q
x4 = =22 X (2.37)
s+ s+1
b
with W, = 1. This constrains W > me = 3 due to

guasi-linearity constraint {2.30b). With the narrow limit
cycle filter H it is possible to design for any w, > 3.
Let us use W, = 10, (wo = 3 could be used, but it is

seen later that even 10 is not practical} and choose

A

3/2. Then from (2.30a and 31) Al = kuqwa = 4'5qx'
since o = 3 from the specifications. Using X,; from

{(2.37) in (2.35) gives



AR.T 2 2
Maa. = Le _ _45(8)7(15)

T a2
RiX_ 1Py (5+6) “{s+15)

M_G,/2 ,

The output limit cycle magnitude constraint is

M G, (Gu YE(Jo ) By (Gu ) |

i
=Y

(2.38)

2 2
= |HGu) | 206 39| < .o01 = m/x,. (2.39)
s (s+1) (s+6)“(s+15) )
Jw
0
We find at w, = 10, MOIGz(le)Ph(jlo)I = -15,7db, so

that |H(310) |

Eg. 2.33 is completely determined except for 1.

for ¢ that provides the reguired |H(3510)| gives

r = 0.0015 and

_ 2 {s%+2(.0015)10s +102
H{s) = T

524+2(.0219) 8, 17s+8.17

5| -

~-60 + 15.7 = —-44_2db. H, agiven by

Solving

(2.40)

The gquantities on both sides of Eg. 2.39 are plotted on

Fig. 2.4.

Shaping Gy to establish the oscillating

fregquency at 10 rps, a satisfactory compensation is

All.26x104[(s#1)(s+6)(s+l5)]2.
17 '

G
[(s%+2(.6)135+13%) (s°+2(.4) 255+25%) ]

and the corresponding loop transmission is

(2.41)
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£.58%10° (s+1) . (2.42)
s[(s2+2(.6) 138+13%) (s2+2(.4) 255+2521 2

There is no magnitude or bandwidth regquirement on Lf

. other than that Lf(jwo) = Lf(jlo) = = 1/2, so
{Le{jw) | has been chosen rather small. A plot of L,
is shown on Fig. 2.4. Factoring 1 + Lf gives the data

on Table 2.3.

]
Poles _T Zeros
P g w Z 4 %
L1721 10.1 1
797 118.2
278 | 24.4
.455 1 27,3
K =1 K = 4.58x10°
O fos)

Table 2.3. Parameters of Lf/(l+Lf)

using L from Eg. 2.42,

£

The prefilter is found from
F = T(1+Lf)/Lf ' (2.43)

and comparing data for T (Eg. 2.17) and (1+Lf)/Lf
from Table 2.3, it is found as in the previous example
that F has an excess of zeros over poles, and is
therefore not realizable. With the justification given
in the design example of Sect. 2.1, we add additional

far pole pairs to T and Xe at 24.4 and 27.3 rps with



proper damping to cancel the zeros of 1 + L, at

these locations. These are well above g and so have

Poles Aeros
P z w Z T w
1 : .172 | 10.1
1 .497 118,.2
1
6 H
6
i5
15 o |
o= = A
K, =1 R, = 0.28

Table 2.4 Parameters of
prefilter F.
negligible effect on the design. The design is now
complete, except for a choice of q, and the relay
output level M, neither of which are important to

what is demonstrated in this example. Note that H

in

Eg. 2.40 is unrealizable because it has an egqual number

of poles and zeros. In the structure of Fig. 2.1,

Gl/H

and G2H_ may be realized as single compensation func-

tions so it is not necessary to make H realizable by

itself.

Consider again the idealized

xe(t) = xel(t) + xez(t)
-w, t -rw_t

= q,w.e ‘o +qwa(l—l)e © cos[wot/i~cz]. {2.44)
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The guasi-linearity constraint W, E_me implies that
xe(t) should have no significant frequency components
above Uy s but xez(t) is at frequency ey 1—@2 = W
In fact xez(t) will be a very lightly damped sinusoid
at this frequency. 1In Sect. 1.2 it was observed that
© for odd, static, and single-valued nonlinearities the
incremental input describing function (IIDF), Eq. 1.9,
holds for small sinusoidal components of any frequency
not rationally related to O Also it was noted that
the IIDF was N .. the describing function being used for
the total signal xe(t]. Hence, if X in (2.44) is taken
near unity, one should expect Nf to satisfactorily

describe the nonlinearity transmission for both x t)

el(
and xez(t). In the following section we will not be
able to make er(t) arbitrarily small, so a simulation
will be necessary to verify the validity of N for the
total xe(t).

We have shown in the above example that the SOAS
oscillating frequency can be reduced to the limit
required by gquasi-linearity, i.e., w, = max[Bwb,Bmm], by
using narrow and high peaking in X, = Xel/H. Reducing
W, will in general reduce the sensor noise power that
is transmitted to the plant input. As discussed in
Sect. 1.4 this noise power is approximately proportional
to the area under the [Lf(jm)/P(jw)]2 =

Nf]Gl(jm)Gz(jm)|2 curve on an arithmetic scale. The

quantity NfIGl(jm)Gz(jw)l in db has been plotted



in Fig. 2.3 and 2.4 to illustrate its significant re-
duction as a result of the decreased oscillating fre-
quency w, . However, the ideal design scheme in this
section is not practical. Consider, in Fig. 2.4, the
effect of a small variation of Wy, Say from 10 to
9 rps. The system output limit cycle magnitude is given
by KzMolez(jwo)H(jmo)Ph(jmd)], and at 9 rps this
guantity has increased by 60 db or a factor of 103. Thus,
even small variations in W r which will always be
present due to imperfections of the compensating elements,
can cause the limit cycle component of system output
to far exceed its specified bound.

In Sect. 2.1 a rather simple synthesis scheme gave
a large value of W s basically determined by the ratio
quZ/Klm° In the present section an idealization in the
design of X, has essentially eliminated this constraint
and allows W, to be determined by other, and frequently
less severe, constraints. The idealization has very
limited, if any, practical use, but it indicates that
one can possibly do considerably better than in Sect. 2.1.
In the following section we shall explore the middle
ground between these two extremes, and in the process
develop a synthesis scheme that can be applied to real

systems.
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2.3 Satisfying Quasi-Linearity and Output Limit Cycle

Constraints with Minimum Oscillating Frequency

and Practical Specifications.

In Sect. 2.1 it was shown that the combination of

SOAS output limit cyecle magnitude limit, range of plant
gain variation, and command input magnitude places a
severe limitation on the minimum achievable loop trans-
mission bandwidth (or oscillation frequency). This
phenomenon is accentuated when the plant gain variation
is large, which is just the situation where the SOAS is
most useful. In Sect. 2.2, by using a very special kind
of limit cvele filter the above constraint on bandwidth
of loop transmission was removed completely, however, it
was pointed out that this limit cycle filter was too
much idealized to work in practice. Nevertheless, this
ideal filter has provided the insight and motivation for
the design procedure to be developed in this section. 1In
the fellowing development the anticipated range of
oscillation frequency variation is taken as a specifica-
tion and a notch limit cycle filter is used to reduce
the oscillation frequency as much as is practical in a
given design situation. It is found that the cost of
reducing the oscillation frequency is the necessity to
realize an increasingly complex filter and its inverse
in the system,

| The same feedback structure is used, and it is shown

again in Fig. 2.5 for easy reference. The constrained
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]
AL
=

Fig. 2.5 SOAS feedback structure.

part of the system, the plant P, is now assumed to
have uncertainty associated with its dynamics as well as
the gain factor, written
we W
P(s,w) = K(W)Ph(s,w); (2.45)
K(w) € [Ry,K,0
w is the vector of all plant parameters and K(w) is

the high frequency gain factor (P(s,w) - K(w)/s® as

_ min
wew

K(w) and K, = Rax K(w). In

s+ ®). K, () s

subsequent notation the functional dependence on w will
be omitted unless specifically needed for clarity. The
oscillating frequency W is assumed to vary about a
center wvalue wé with the variation quantified by the

given parameter vy, i.e.,

¢ 1 —
w, € [wo/Y,on] = Q (2.46)

wé is not known at this point, rather it emerges from

the synthesis. Y = Yth is made up of a component of
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specificarion L due to compensatinn uncertainty from
Eg. 1.20, and a component from planti parameter uncer-
tainty Y, treated in Chapter IIT.

In Fig. 2.5 let Z e be the forced component of
plant output signal due to either a command or distur-
- bance input and Xf is the corresponding input to N,
Then Xf = Zf/[NszHKPh] = AZf/[Msz

some more restrictive set of plant parameters We(: W

HKPh]° There is

and input that produce the extreme nonlinearity input

X i.e., the fastest and/or largest X which comes

£

closest to violating quasi-linearity constraints

ef

i NGO N NE W2 (2.463)

w, < 0 /B . (2.46b)

All the extreme parameters and functions are so denoted
with a sub-e and we have

A Z
X, = = . (2.47)

’ e MfGZHKePhe
For the remainder of this section the discussion is re-
stricted to command inputs so Ze is made up of the

extreme input Re and an extreme transfer function _Te

which is the transfer function only when Ph is at the
value Pio- Thus,
AeReTe
X = . (2.48)
e MszHK Ph
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he

is obtained and paired

There is a distinct pairing of T, with P and

Appendix B discusses how Phe

with Ty- Fere we assume the pairing has been made

and both functions are known. In general P may be

h

independent of some elements of the parameter vector w

80 that when it is fixed at P Ke can stikl have

he '
uncertainty K, € [Kel,hez] Cf[Kl,Kz]. However‘. Ae/Ke
in (2.48) is constant by the same arguments used earlier

when Py had no uncertainty at all. Thus any value in

the set may be used in the following syn-

[Koy:Kepl

thesis calculations. We shall simply denote this choice

by K, and when Ae is obtained it is the A that

exists when P = KP . To clarify the above consider
the following plant. P(s) = K&a/[s(s+a)] where
w = [Kz,a] with Kﬁ and a varying independently in

[Kgl'ngl and [al'aZ]’ giving X g [Kl’K2] =

[Kﬂlal’K22a2]' Then Phe = 1/[s(s+ae)] while
Ke c [Kel'KeZ] = [Lﬁlae’ngae]’ and one might choose
Ke = Kﬁlae to use in the synthesis calculations.

It is again convenient to separate X, into the
"smooth" part and the part due to the complex limit cycle

filter H as

_ Xel _ A"y Qx
Xe = = ¥ — (2.49)
H R Y
qg.w
. _ *xb
with Xel = 5 o, {2.50)

b X
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Tha qwa/(s+mb) part of Xel is chosen in accord
with Appendix A and assumes step inputs and one pole at
the origin in the plant. In Sects, 2.1 and 2.2 it was
found that X, cannot be realized with a single pole,
SO @X allows for the addition of far poles. To

" emphasize that the absolute value of A, or q_ are

not determined by the design procedure, the notation
A, = dogwy (2.51)

is introduced.

Summarizing the above we have

X Aog w, R T
Xe - _el - wa e’ e (2.52)
H MfKeGZHPhe

where

rog_w, R T q..u
X, =—2xPee. xb 4 (2.53)

s+ x
MfKeGZPhe b

and X, must satisfy quasi-linearity constraints

max

& |xe(t)l < Ae/a = Aqu

b (2.54a)

wy < w /B .

Simultaneously the output limit cycle constraint,

M6, (Ju ) H(Ju )P, (G ) | < m/K_, (2.55)
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. R . max .
. o = T
miust be satisfied, where [K‘?hu(jm_)] WEW|_.(3w )l.

Solving (2.53) for G? and substitunting in (2.55) gives,

after some rearrangement,

Xel(me) _
AeHiijE -
X (Jw) Ko [ AP, (jw)
e 0 m| o . . hm o}
> [R_(ju )T (jw )| l=—=2 021 .  (2.56)
A KemiMf e'" 0o’ "e' Y0 Phe(jwo)

The task now is to find a suitable combination of
center oscillating frequencdy wé r the filter H, and
Ae = Aad_u, to satisfy (2.56). Observe that ) depends
on H because each H will produce a different

mix|xe(t)| for Eq. 2.54a, and therefore demand a

different ). Given values for mé and ), the corre-

sponding |H(jw)| required is obtained from (2.55) as
(& M X . {(jw) P, (Gw)
™ f e1'3Y he ‘1 s w e
M_| R (3T Gy | [P, (Jw) |’
IH(jw)I _ <AuqwaKm o] e e hm
1 : w g Q.
\
(2.57)

The ideal limit cycle filter of (2.57) is shown in

Fig. 2.6a using a straight line approximation over .
An obvious modification modification of (2.57) will give
H with finite slopes shown dashed in Fig. 2.6a. Sub-

stituting (2.57) into the first relation of (2.52)
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wo/Y WY
QO > logw
/
/

3\

\/
[H(jw) | —"" /

g2
+

. A
| (30 | ,
q—__——‘\ | :
U w
¥ s 4 O > lOgw

(b)

Fig. 2.6 Ideal limit cycle filter H

and corresponding X~

yields
lluq,mbK M P {jw)
"X mf-o . . hm .
Km |M_ IRe(jm)Te(Jw)l B (Guy|’ “ & &
. = e £ he
|Xe(]w)|
L|Xel(3w)| ;w g Q.
(2.58)
Using X_, from Eq. 2.53 combined with |H(jw)| shown

in Fig. 2.6a,the plot of Fig. 2.6b for lXe(jw)l results.

Observe that (2.57) is independent of Qs while
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q is just a scale factor in (2.58). Similarly, since

X
[H(jw)| is evaluated at W, > me in (2.57) where

IXel(]m)l = qwa/m, the value is closely independent of
Wy s i.e., the choice of @, has an insignificant influ-
ence on the determination of minimum W,y Therefore it
is reasonable to take W, near the maximum transfer

& W .

function bandwidth, w
b m
Xe(jw) is minimum phase, so using the Hilbert
transform[ZG] as applied to this problem by Bode[27] the

phase can be obtained from the magnitude characteristic.
With both phase and magnitude the time response may then
be calculated as x_(t) =Ji-1[xe(s)], The following
scheme is used to obtain satisfactory combinations of
mé,l, and H(jw). First choose a value for mé. Then
iterate on A to find a solution of

maX|x (o) | = " x (s, 11 = Ay (2.59)

For each wé, A pair H(jw) 1is given by (2.57). 1In this
manner one can obtain a plot of XA wvs. wé as shown in

Fig. 2.7. A good estimate for a starting value of mé is

Fig. 2.7 X vs. w' for fixed .
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ocbtained by letting H = 1. Then from Bg. 2.53

(assuming negligible contribution to the time response
xe(t) from the far poles in @x) A =1, and
[MOGz(jm)th(jm)] = |M0amquRe(jw)Te(jw)th(jw)/
Merl(jw)Phe(jw)l as shown in Fig. 2.8a. Where this
quantity equals m,/Km (Eg. 2.55) gives a suitable value

for w&/v, This is the solution found in Section 2.1

~ M G, (jo)H{Gm) P, (5w) ]
\\{l o%2 301 Py (3

- J ~
- N

-~

o

L
m/Km
ENEY
W
. )
qx

Fig. 2.8 Behavior of functions of interest

as wé is reduced.



59
generalized to permit variation in w_ . From here we
work to lower frequencies with mg. Each reduction of
mé causes H +o become a deeper and more complex
filter and it causes mixlxe(t)] to increase, thereby
increasing the gain of G, = laqwaReTe/[MfKeXelePhe]

at all frequencies. The behavior of H, G and X,

2
with decreasing wé is illustrated in Fig. 2.8,

Assume now that Fig. 2.7 has been constructed in the
manner explained above. How does the designer use this
curve? First there is some lower bound dictated for the
oscillating frequency by the bandwidth of the transfer
function, W, > me. Also, a minimum oscillating fre-
quency is dictated by disturbance response and/or Ph
parameter sensitivity considerations which are treated
in the next chapter. Let the largest of these lower
bounds be Wy shown in Fig. 2.7, such that some freedom
remains to reduce wé by taking H # 1, Any
mé‘i wlfy can then be chosen as the center value of
oscillation frequency. The designer must choose a value
by making an acceptable tradeoff between loop transmission
bandwidth and the complexity of the limit cycle filter H,
which must be realized twice in the loop of Fig. 2.5,
Having made such a tradeoff, wé and A are available
from Fig. 2.7. The magnitude characteristic for H{jw)
is given by (2.57), or its finite slope replacement, from

which a rational approximation is obtained. The compensa-

tion function G2 is obtained from (2.52) as



60

Aoy oy, B
T

K »
Mf“exel”he

(12 =

(2.60)

The compensation Gy is then shaped to provide the level
of loop transmission required for disturbance attenuation

.and/or P, parameter sensitivity over the low and inter-

M
— 3 [+]
Lo = K"'KeGlG2Phe with 180° of phase lag at the chosen
oscillating frequency mé, Finally,
MK
L - _fe G, G,P » and the prefilter of Fig. 2.5 can

fe Ae 172" he

be designed from
F =T (4L, ) /T, . (2.61)

We mention that for a significant class of design
problems some simplifications are appropriate. Recall
that P, was defined (Eq. 2.45) so that it has vanishing

uncertainty at high freguencies, i.e., Ph(s) - l/se for

large |[s|. It follows that when the specifications are
such that a high oscillating frequency is required,
Km[th(jmoy|/|Phe(jm0)| + K =+ K,, and this result can be
used to simplify Egs. 2.56, 57 and 58. Also, some far
poles above w, may be assigned coincident in To and
Xo,1 9iving a reduction of order of G, seen in

Eqg. 2.60. Further, if these poles are a reasonable
digtance above W neglecting them will have no signifi-

cant effect on the calculation of |H(jw)| or lXe(jw)!

from Egs. 2.57 and 58 respectively, nor will they effect
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xe(t) significantly. This means their location need not
be known during the preparation of the curve of Fig. 2.7;
all we must know is that they lie well above the oscilla-
ting frequency, say above the wé resulting when H =1
in Fig. 2.7 and 2.8a. Therefore they need not be assigned

at any specific frequency until wé is determined and

= [} hd [ ] —_— [ 3 -
Lfe designed. Since Lfe(jwo) = 180°, there are in
evitable poles of Leo above mé which result in far
off zeros of 1 + Lfe“ Once Lee is known these zeros
of 1 + L., can be assigned as far poles in To and

X which by (2.60) reduces the order of G and by

21‘-’
(2.61) reduces the order of ¥F. This is precisely the
technique used in the examples of Sects. 2.1 and 2.2,

The synthesis technique of this section is next

demonstrated with a numerical example.

2.4 Design Example

in this section a design example with significant
plant ignorance is worked out. The objective here is to
assume that the minimum oscillating frequency is deter-
mined by the combined constraints of output limit cycle
magnitude and quasi-linearity, and then select the
oscillating frequency and design X, and H wusing the
methods of Sect. 2.3. This portion of the design is later
incorporated into a complete SOAS design and simulation

in Chapter V.
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Nonlinearity:
Tdeal relay NO = MO/A = 4M/TA (2.62a)
with output
level M j Nf = MF/A = 2M/TA {2.62b}
Quasi-linearity mixlxe(t)IAe/a= Aqwa;ai3 (2.63a)
censtraints } W < wofﬁ; B> 3 (2.63b)
Transfer function:
. 2 2 2
Te(s) (6)2 (25) 2(50) 2 (2;64)
(s+6) " (s+25) “ (s+50)
Plant:
X a e [a],azl = [1,10}
P(s) = KPh(s) = —— ) (2.65)

s(s+a) |X e [K,,K,] = [1,10]

The plant parameters a and K are independent.

Extreme command input:
Re(s) = qr/s = 1/s
Maximum limit cycle output:
m= 0,1

Limit cycle frequency variation:

(2.66)

(2.67)

The limit cycle may vary +12% about the nominal

wé, i.e.,

Il

v ' = (s
UJO £ [wO/Y'MO/Y] = Q2 ¥ l1.12.

(2.68)
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Design

The first step is to determine what plant parameter

set constitutes the extreme plant P This is con-

he”®

sidered in Appendix B and in accord with the conclusions

there we select

p. = 1 - (2.69)

he s(s+a2) s({s+10)

We also note that for the plant given in Eg. 2.65,

B m hm(jw )| maX[P(jm )] is obtained from
K
_ 2 10
Kmth(s) - s(s+al) ~ s(s¥1) ' (2.70)

without regard to the particular W, that emerges from
the design.
The low freguency dominant part of X, is chosen as

Aty _ 6y

= = ’
el s*wb a+6

(2.71)

and the far poles that will eventually appear in Xa1

are neglected for the present. If no limit cycle filter

is used, i.e., H = 1, then xe(t) = xel(t) and
Egs. 2.63a and 71 give m§X|xe(t)| = qu = Ae/a, while
Ke = Kl = 1 1is satisfactory. Therefore
v Te ) mbReTe
MG, = ————
Kexelphe

_ 3(6) 2 (25) % (50) 2 (s+10)
(s+6) (s+25) 2 (s+50)

(2.72)

MOGZ/Z.



64
This is the design walue for G, only if H =1, which

permits A = 1 in Eg. 2.63a. Otherwise G, in (2.72)

2
will be multiplied by A > 1. Using G, from above and

P from (2.70),

hm
2 2 2
. . 6 25 - 1
M_|6, (Gu )Py (Gu )| = (6)°(25)°(50) " (s+10)__
° °oamne s (s+1} (e+6) {s+25} “{5+50) 7|,
1 -— % AN Ijmo
f_ .01 = lTl/Km - (2°73)

The functions on each side of inequality {2.73) are
plotted on Fig. 2.9, from which the minimum wé is read
as wé = 48.6Y = 54.5 rps. A smaller oscillating fre-

quency is desired if possible so the limit cycle filter

design steps are carried out. From Eq. 2.57

Kem ﬁg Xel(jw) Phe(jw) . w e D
H(jw) =¢ K_Xoo_u Mot Rg (JW)T  (Jw) | )Py (Juo) |
1 ; w fFQ
a5 | 2, 2
2.77%10 'lOs(s+l)(s+6)(s+25) {s+50} 0 e Q
A 6(25) 2 (50) 2 (s+10) .
jw
1 r w b Q.
(2.74)

Then
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K _how 1M P (Gw)
X, (jo) e (i [Re G 5w || Pt w2 o
1A v - St £ Php(jw)
a, o
lxel(jw)'l/qx :w £ Q
( 3.6ax10%|_(62(25)%(50) 2 (s+10) e o
| 105 (5+1) (8+6) % (s+25) 2 (s+50) 2 i
= £
e .
\ ,g'_;g jm r W ﬁ Q-
(2.75)

The next task is to use Eg. 2.75 to calculate mé, A
pairs to produce the X vs. mé plot. This is implemented
by getting the phase of Xe' using the Bode method[ZT],
followed by inversion to time response using the Discrete
Fast Fourier Transform (DFFT)[28’29]. Several points
are plotted on Fig. 2.10 and connected by a continuous
curﬁe.

.From consideration of the rapid rise in A below
30 rps in Fig. 2.10 and the complexity of the required
filter H, mé = 28.2 rps is chosen as a center value of
oscillating frequency that appears achievable. The ideal
filter with 500 db/dec slopes centered at mé = 28.2 rps
is shown in Fig. 2.11. A rational approximation to the
ideal filter is also shown in Fig. 2.11 and has the

parameters tabulated on Table 2.5. Also the plot of

MOIGz(jw)H(jw)th(jw)l has been added to Fig. 2.9.
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Plot of X wvs, wé calculated

using ideal limit cycle filter
with 500 db/dec slopes and
v = 1,12,

Poles

Zeros

22 .025 |25,6
35 .04 30.5

Table 2.5 Parameters of rational

H shown in Fig. 2.11.
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Fig. 2.11 Ideal and rational
limit cycle filters,

Shown in Fig. 2.12 are time responses of the
original xel(t) from Eg. 2.71 and the resultant xe(t)
after modification by H. Of course some far poles
must eventually be added to Xe(s) when designing the
final loop transmission and these will set xe(D) = 0.
With A = 1.22 we get Ae/qX = lamb = 22 which is very
close to the peak value of xe(t) shown in the figure.

The design value of MG, is now obtained by
multiplying the quantity on the right of (2.72) by

A = 1,22, completing the portion of the design to be

demonstrated in this secgion. Use of the limit cycle

A8
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7 uxelﬁt)/(Iqu}

2.0 /
2.0l : uxe(t)/(Iqu)

/
INIIRNANY

—
Pt |

Fig, 2.12. Time response mxel(t)/qx
and cxxe(t)/qX using rational
limit cycle filter from Table 2.5.

filter has reduced the oscillating frequency by the
factor 54.,5/28.2 = 1.93, or nearly an octave.

The filter in Fig. 2.11 is not quite as deep as it
should be at some frequencies. The maximum error in the
interval & is about 2.5 db;which will manifest itself
in the completed system design by producing an output
limit cycle in excess of the specification by the factor
1.34. Of course this is only a violation when the plant
has maximum gain K, = 10. Note the clear visibility of
the tradeoffs among various specifications. The com-
promises available to avoid redesigning H are a)
allow the larger limit cycle, i.e., set m = ,134,

b) demand smaller K,/K; and reduce ]Gz(jw)l (Eq. 2.73)
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to bring the limit cycle in tolerance. c¢) reduce
|G2(jw)] and require smaller inputs, q, £ 1/1.3 = .75,
d) reduce ]Gz(jw)| and attempt to get by with a small
violation of quasi-linearity constraint (2.63b) when the
maximum step input is present. We shall consider the re-

‘mainder of the system design for this example in

Chapter V.
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CHADPTER TIT

SATISFYING SOAS SENSITIVITY SPRCIFICATIONS

WITH UNCERTAINTY IN PLANT DYNAMICS

3.1 The Approach

The constrained part of the system, the plant, in

Fig. 3.1 is described by transfer function

w e W
P(s,w) = K(W)Ph(s,W); {3.1)

(P(s,w) + K(w)/s° as |s| + =) with the parameter
bounding sets W, [Kl,Kz], and the plant structure known.

The SOAS property gives zero sensitivity to variations in

O}

F Gl{H | G2H _ P j/

[

-1 4

Fig. 3.1 SO0AS structure.

the high frequency gain factor K(w). In this chapter a
synthesis method is given for satisfying fixed specifi-

cations on sensitivity to plant dynamics with a minimum
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bandwidth loop transmission, i.e., a loop transmission
that is optimal in the sense of Sect. 1.4.

The forced signal loop transmission is

L. = N_.G.G,P = —=— G.G.P (3.2)

H
I

FLf/(1+Lf) . {(3.3)

It is assumed that specifications are given as
bounds of acceptable variation AIn[T(jw)] as a function
of w. A method for satisfying such specifications in
linear systems has been given by Horowitz and Sidi[22],
and this method will be adapted to the present problem,
The prefilter F is a fixed transmission so Aln[T{jw)] =
AIn[F (3w Le (§0) /(1+Lg (30 )] = Aln|Lp(Gu) /(14T (Gw)) | +

j%/if(jm)/(l+Lf(jw)), Similarly, if we assume A/K does

not change with P, » then Aln{Lf(jm)] = Aln[P, (juw)]
since the remaining fixed parts of Ly cancel in the
difference. Thus the specifications and plant uncertainty
are both in terms of Lf(jw), viz, Aln[Lf(jm)/1+Lf(jw)]
and Aln[Lf(jw)] respectively. The two guantities are
conveniently related on the Nichols chart which has
coordinates of ln[Lf(jw)| vS. Eftjm). For a given
range of plant uncertainty Aln[Ph(jw)] = Aln[Lf(jw)].

the specifications AIn[T(ju)] = Aln[Le(Juw) / (1+Lg (Fw)) )

may be translated into bounds on acceptable Lf(jw). The
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details of this translation are given in Appendix C. A
loop transmission Le is then synthesized which has
minimum gain-bandwidth while satisfying the sensitivity

bounds.

for Forced Signals

3.2 The Equivalent Plant Pf

To apply the method of [22] to the SOAS it is

hecessary to write the loop transmission as Lf = GP,
where P contains all the parameter ignorance of the
loop. Pf is the equivalent linear plant seen by forced

signals in the SOAS. From the nonlinearity describing

functions

b
1

MO/A (3.4a)

N, = Mf/A, (3.4Db)

the forced and oscillating loop transmission are

L0 = NoGleKPh, (3.5)
and
Mg
Lf = NfGleKPh = = GleKPh
N M
£ f
= — I = . T, . (3.6)
N, o M, o
To sustain the limit cycle LO(ij) = -1, and using this

in (3.6) gives

x = 11,61 (500G, tiu )P, Gu )| - (3.7)
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If only the plant gain factor changes, A/K in (3.7)

remains constant. However, when the parameters of Ph

change then IPh(jm)l will be changed as well as
izh(jm). The phase change in Py in turn causes the
oscillating frequency W to shift and the net result
is that the right side of (3.7) changes in a rather

complicated way with the varying parameters of P To

he
obtain an expression for the equivalent plant, A/K from

(3.7) is substituted back in L. of (3.6) vyielding

M.G,G,P

£f7172"h
IMoGl(jwo)G2(jwo)Ph(jmo)'

M_P
- £ h
1M G (Ju 16, (Ju )Py (Gu ) |
= 3.
where we have defined
G = GG, (3.9a)
and
P. = KPP = MfPh/|MOG(ij)Ph(]wO)| . (3.9b)

The quantity Ke = Mf/IMOG(ij}Ph(ij)[ is a varying
gain factor that is part of the equivalent plant Pf. For
example, suppose Mf/M0 =1/2, G = 1/(s+10), and
Ph = 1/[s(s+a)] with a ¢ [l,4]. Then Lf =

M /A[s(s+a) (s+10)]. For a = 1, the oscillating
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frequency is determired by /Lf(jwl) = ~180° which
gives w, = 3.16, Solving for |Lf(j3.16)| = 1/2
gives Mf/Al = 55, Thus Ley = 55/[s(s+1) (s+10}] and

this function is plotted in Fig. 3.2. Now letting a = 4,

100

Fig., 3.2 Illustration of gain factor

variation with parameters of Py -

we get L%z = Lfl(s+1)/(s+4) which is shown dashed in

Fig. 3.2. fL%z(jmz) = -180 gives the new oscillating
frequency at Wy = 6.32, but at this freguency

|L%2(jw2)| is -20 db so A must change value so that
sz(jwz) = -1/2. Solving, Mf/A2 = 280, and Ley =
280/[s(s+4) (s+10)]. As a varies from 1 to 4, A varies
by the ratic Al/A2 = 280/55 = 5.1. This gain variation

must be expressed as part of the uncertainty of the loop
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transmission and accounted for in the design to satisfy
transfer function sensitivity specifications. The

magnitude of the gain uncertainty depends on the compen-

sation G, as well as the parameter uncertainty of Py .

In the above example L_,(jw,) = L_,(jw,) = -1/2 and the
, f1 1 f2 2
ratio of thesc two loop transmission v

o glves A/B, =

. Thus we write the

|G (o) Py (G01) /G (Juy) By o (Gu,)
equivalent plant Pcas a function of G as given by

Eg. 3.%b. In summary, we have the loop transmission
(3.10a)

where

Pe = KcPp = MfPh/IMOG(ij)Ph(ij)I, (3.10b)
which is to be synthesized to satisfy given transfer
function sensitivity specifications with minimum band-
width. Due to the constraint Lf(jwo) = -Mf/MO,
minimizing loop transmission bandwidth is equivalent to
obtaining the smallest possible Wy subject to the
sensitivity specifications. Neither W, nor G are
known at the outset, while the eguivalent plant ‘pf
depends on both of these guantities. Thus an iteration
scheme will be implemented whereby we converge to the

minimum oscillating frequency and the required compensa-

tion G simultanecusly.
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3.3  Synthesis of SOAS Loop Transmission

to Satisfy Sensitivity Specifications

In this section a method for determining the minimum
bandwidth (minimum wo) Lf(jw) to satisfy given sensitiv-
ity specifications is developed. Assume that bounds on
the acceptable magnitude variation, 1In|T(jw)|, are

given as shown in Fig. 3.3a and b. Also shown in

é"—ln]TmaX(jm)l

=

oy | —”
ln|Tmin(3w)|

(a)

Aln|Ph(jm)f ~—\&

Aln|T (jw) | .

(b}

Fig. 3.3 Permissible variation of In|T{(jw)]|
vs. variation of ln|Ph(jm)|.

Fig. 3.3b is a hypothetical set of bounds for plant

uncertainty AlnIPh(jw)I. In general the loop transmig-

sion is Lf = GPf = GKfPh with Pf dependent on G and
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W in the manner given by Eg. 3.10b.

o since

However,
neither of these are known at this point, we first neg-

lect the gain factor Kf of Pgo and use Ph(jm) to

obtain a set of bounds for Lf(jm) using the specifica-

tions on Aln|T(jw) |

and the method detailed in Appendix
' C. Since Ly varies with P, the bounds apply to some

reference value of plant parameters denoted by Lfl =

GP The bounds are conveniently displayed on Nichols

hl°*
w
Bl-¥ 1
)
Q
5
- ™«
3
o . w
g S~ . -2
-90e°
—4
1
By

Fig. 3.4 Boundaries for optimal Lf(jw).

chart coordinates (lnlLf(jw)[ vS. Lf(jm) ) as shown in

Fig. 3.4 labeled

above the bound at

_wl,mz,,..mn. Lfl(jmi)

W,
1

in order to satisfy the

must lie on or
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sensitivity spenification A1n|T(jmi)|. 't is noted in
Appendix C that these bounds can also include specifica-

tions on Q/T(jwi) if desired, however, for minimum

phase design the magnitude specification is sufficient.
There are in theory an infinite number of bounds, but in
" practice the designer chooses enough freguencies to
provide high confidence that Lf(jw) will satisfy the
intermediate bounds that have not been computed. At some
frequency near, or possibly as much as an octave above,
the Aln|T(jw)l., Aln|P_(jw)]| crossing in Fig. 3.3b the
bounds will cease to exist or become insignificant
because the permitted variation in 1n|T(jw)] is larger
than that exhibited by the plant, i.e., no feedback is
required in this frequency range. Several other bounds
are shown in Fig. 3.4 whose construction is investigated
next.
In the SOAS we permit only one freguency to satisfy
Z%ﬁijg? = -180°, which is the oscillating frequency u,.
Therefore, there is some maximum phase lag boundary, B1
in Fig., 3.4, given by fo(jm) > em > =180° which
applies over the intermediate frequency range. In the
next freguency range the bound Bd comes‘into effect.

This bound is derived from the disturbance response

damping constraint

- L (Guw)

R v AT (3.11)

1+Lf(jm)
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The significance of (3.11) has been discussed in

Sect. 1.3. At the oscillating frequency L is con-

£
strained to pass through the point Lf(jwo) = "Mf/Mo°
Of course & in (3.11) must be large enough so that
B, excludes this point. Above w,» where the final
" poles of Lf are introduced, some limit on maximum

peaking is imposed, [Lf(jw)] < =b (@) for w > w,.

This gives the horizontal segment of B of Fig. 3.4,

2
Finally, Ly must have some specified excess of poles
over zeros e, so that eventually /Li(jm) + -90e°,
giving the vertical segment of B,.

The boundaries at wl,mz,...wn are applicable to
Lfl only, but they are constructed to guarantee satis-
faction of the transfer function sensitivity specifica-
tions over all possible plant parameters provided the
specific value Loy satisfies its bounds (and assuming
for the present the gain factor variation in Pe is
negligible). This allows the designer to work only with
Leq in full confidence that all other Le will be
satisfactory.

The above is not true for the heavy boundaries B,,

Byr and B2 of Fig. 3.4 which apply to all L it is

f'
possible to design Lfl to satisfy these bounds as

indicated by Fig. 3.5, and then find for another plant,
say th, that Le¢, violates the bounds as shown. It

can be seen from Fig. 3.5 that the situation would not be
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improved by using Ph? as the reference plant to design
with. A reasonable approach to this problem is to choose

Ph1 as the parameter set that gives maximum phase lag

Fig. 3.5 Violation of boundary B
which applies to all L

d

£

over the low frequency band. Then Lfl must be designed
to avoid the higher frequency portions of Bd' B, by
some margin. The margin can only be found by checking
the remaining L. (juw).

Finally, one additional constraint is placed on the
oscillating frequency W, . Recall that the describing
function N, has a wvalid frequency interpretation over
(O,MO/B), where £ 1s the guasi-linearity parameter
from Eg. 1.16b. Therefore, to insure the validity of Le

over the fregquency range where sensitivity reduction is

required we require that

(3.12)
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for all Py e
A sumary of properties of LF(jw) which will be

gquite ¢lose to optimal in the gain-bandwidih sense of

Sect. 1.4 is given below.

Property 1. L{ju ) = —Mf/M for all P, .

0 h
Za W > 6wn for ail Ph°
3. Lf(jm) does not cross the bounds Bl' Bd'

and B2 for any Ph‘

4, Lfltjwi), i=1,2,...n, 1s on or above

the respective bound at W, - If Lfl(wi)

is above the bound at Wy then it has the
maximum phase lag permitted by Property 3.
(For example, if Lfl(jwz) has maximum
phase lag of all possible Lf(jmz), then

if Lfl(jwz) is above the w, bound of

2

Fig. 3.4, it is on Bl“)

5. For w > W, Lfl(Jm) is as close to

bounds Bd and B

Properties 1. and 3.

5 @s permitted by

These properties follow closely those given in
[22,23] for linear design, but are modified to allow for
the special constraints of the SOAS loop transmission.
They are intended to serve as a guide to the designer
for shaping a real rational loop transmission. A

practical Lfl(jm) might appear as shown by Fig. 3.6.
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{Lf(jm) (deq)

Lgp (Guy) = ~Me/M,

Fig. 3.6 Hypothetical loop transmission
satisfying all boundaries.

Next we consider the gain factor of Pf that has

been thus far neglected. We have

L. =GP

£ (3.13)

£
with

P

g = KgPy = MfPh/|M0G(ij)Ph(jwo)l. (3.14)

The sensitivity bounds at Wyrlhy,...0, are first
obtained by neglecting the gain factor uncertainty in Pf
and using 2% in the manner of Appendix C. Then

Lfl(jw) = GPhl(Jw) is designed such that Lfl satisfies
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the sensitivity bounds and all Lf satisfy the bounds

ar and Bz, From the design for Lfl the value

of W for plant Phl may be obtained, and the com-

pensation is G = Lfl/Phl“ With any other plant value

Bl' B

the loop transmission is Le = GK P, where

' Ke = Mf/IMOG(ij)Ph(ij)[ is the gain factor required
to satisfy Lf(jwo) = —Mf/MO. For a significant class
of design problems this gain factor will exhibit very
small variation, and can therefore be neglected com-
pletely. The reason that this is true is that w tends
to be well above the varying plant dynamics and Py is
defined with vanishing uncertainty at high frequencies
{see Fig. 3.3b). If it is ascertained that the gain
uncertainty is negligible, then the design of Lf for
sensitivity is complete.

In any particular design problem the gain factor
variation may not be insignificant, in which case we
must insure that the sensitivity specifications are met
with the smallest possible bandwidth lcop transmission,
taking the Ke uncertainty into account. From the
design of Ley above, a function G is obtained. This G
cén now be used to calculate Pf for any plant parameter
set, and with Pe we can obtain a new set of Nichols
chart bounds for sensitivity at - Wyrlyree W . Then we
reshape Lfl as required to satisfy the new bounds,

obtaining a new G and repeating. The above procedure

is summarized in the following design algorithm.
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Algorithm:

Step 1. Choose a reference plant parameter set de-

noted by Phl’ Take Pfl = Phl and
approximate Pr = P, for remaining plant
parameter values. Use Ph as the plant for

obtaining bounds on LFl(jwi}, i=1,2,...0
in accord with Appendix C.
2, Synthesize Ley = GP,, approximating the

optimallity properties given earlier in this

section.
3. Use G = Lfl/Phl to calculate Pf in
Eg. 3.14, and use Pf to obtain new bounds

for Lf(jmi), i=1,2,...n. Repeat Steps 2
and 3 until the realized Lfl and the bounds
computed using G from this Lfl are

arbitrarily close.

If the gain factor Mf/[MOG(Jmo)Ph(jmo)[ of Pf
has negligible uncertainty this will be evident the first
time Step 3 of the algorithm is executed and this portion
of the design is complete at that point.

Each time an L is formed it is constrained by

f1
Property 1 to pass through the value —Mf/M0 and the
frequency at this point is the oscillating frequency W, -
It will be minimized in accord with how well the remaining

properties are satisfied.

When a satisfactory design has been completed by the



86
methods of this section one may check the extremes of

oscillating freguency variation and obtain

w' = /wo o (3.15)
Y “max “min

and

h fi) Jw .
' o) O_ .
V max —min

—_—
i

Yh parameterizes the maximum variation in oscillating

frequency due to parameter uncertainty in P This

h
number is used in the design procedure of Sect. 2.3 to
determine the required width of the notch limit cycle
filter. mé is the minimum center value for oscillating
frequency permitted by the present design consideration,
i.e,, transfer function sensitivity to parameter uncer-
tainty of Ph . However, other design considerations,

e.9., those of Chapter II, may dictate a higher oscilla-

ting frequency.

3.4 Design Example

A numerical design example is carried out below to
demonstrate the design techniques of the preceding

section.
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Specifications

Nonlinearity:

Ideal relay NO = Mh/A = 4AM/TA (3.17a)
with output

level M N, = Mf/A = 2M/TA {3.17b)
Quasi-linearity . .

Constraint }b Vo 2 Buy _B =3 (3.18)

In Eq. 3.18 W, is the highest freguency at which
there is a nontrivial sensitivity specification.

Plant:

Po(8) = —3— : ae [aj,a,] = [1,10]  (3.19)

s (s+a)

This plant has been deliberately chosen with the
pole variation not confined to the low fregquency range so
that it is likely to produce some variation in oscillating
frequency.

Disturbance FResponse Damping:

Lo (jw)
£ <=2\ (3.20)

1+Lf(jw)

Transfer Function Sensitivity:

The upper and lower bounds for acceptable transfer
functions are shown in Fig. 3.7a below. The lower bound
is Tmin = [(6](25)(50)/[(s+6)(s+25)($+50)]]2. In
Fig. 3.7b the permissible variation in the transfer

function is compared with the existing plant variation or

uncertainty.
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Design

The first step in the design algorithm in Sect. 3.3
is to obtain bounds for Lfl(jw) using the method of

Appendix C. The forced signal loop transmission is
Le = GPg (3.21)
with

| MP
Pe = KePp = — ' (3.22)
IMOG(JwO)Ph(ij)I

To obtain the initial bounds, the uncertainty of Kf =

Mf/|MOG(jmo)Ph(jmo)| is neglected, and we use P, = P .

g9



As a reference plant

P, = ST (3.23)
- s(s%al) s{s+1)
is chosen and the resultant bounds for L = GP

F1 h1 @&re

shown as the solid bounds at w = .4,.8,...,4.8 in

is the boundary Byg due to

ig. 3.8. Alsc shown
A rational function Lf] is found as plotted in
Fig. 3.8. The plotted points correspond to the boundary
frequencies in sequence, a convention that we shall
follow throughout. The parameters of the compensation ¢

are listed in Table 3.la and further data on Lf is

Poles 4eros
p z w z z w
6 | 15 3
4 | 60 18
.4 | 100
5 | 120
K = 21.23 K_ = 4.59x10%3

Table 3.l1la Parameters of ¢ for Lf

shown in Fig. 3.8.

given in Table 3.1b. Lg has been shown dashed on

Fig. 3.8 when Py = 1/[s(s*+10}]. Of course each Le

must pass through the point —Mf/MO = -1/2 (-6 dk,-180°),
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and plots of
of

(Jw)
using

Ler

8 Bounds for

3

Fig

G

icnal Lf
Table 3.1la.

rat



0z

wo ) <f KO Km" 7 a
16.1 | 1.0 |21.23 la.soxi0t3 1 1
17.3 1.15 B.11 5.25 3
18.4 1.31 5.56 6.01 5
19.4 1.49 4,51 6.82 7
20.8 1.78 3.77 8.14 10

mé = 18.4 Yy, = 1.14
Table 3.1lb Parameters of Lf = GPf

with G given in Table 2.la.

Obtaining a rational function for L., to give a
reasonable fit of the boundaries is a difficult task.,
which is largely accomplished by a process of cut and try.
Some help may be obtained by using the average relation-
ships between magnitude slope and phase for minimum phase
functions as explained in [22]. The problem here is
considerably more difficult than in linear system design.
For example, in Fig. 3.8 the last sensitivity boundary is
at 4.8 rps while Lfl(jlﬁ,l) = -1/2. If this were a
linear system loop transmission one could add a complex
pole pair, at say 30 rps, having virtually no effect at
4.8 rps and below where the sensitivity bounds are
located. However, for the SOAS loop transmission the same
pair of poles at 30 rps will have a significant phase
effect at 16.1 rps; hence shifting the oscillating fre-
quency. The gain factor is then adjusted so that at the

new oscillating frequency, say Wy Lfl(jwl) = =1/2.



23

The resultant effect is that Lfl is shifted away from
all the sensitivity bounds.

Next we use the gain factor K. obtained from the

first compensation G to calculate bounds for the

£ = KfPh’ Kf is listed in Table 3.1b where a

spread of 1.78 (5 db) is noted. The new bounds are

plant P

shown dashed on Fig. 3.8 for comparison with those
obtained previously. Note they are considerably lower
allowing a smaller bandwidth L.y than the first bounds
yielded. The new bounds are shown solid on Fig. 3.9
along with the second iteration for Leq- Data for this

L is listed on Tables 3.2a and 3.2b. Comparing the

fl
data of Tables 3.lb with 3.2b, the oscillating freguency

Poles Zeros
P T W 2z L w
1.5 .6 12 1
.4 60 3
.4 1100 18
.4 1120
K, = 12,7 K= 2.63x100°

Table 3.2a Parameters of G used

for Lfl of Fig. 3.9.
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after

jw)

(

first G, and Lfl

1

Bounds for L

.9

3

ig

w)

(3

d G from Table 3.2a.

ining

obta

using secon
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n g Kf Ko L E-Km a
12.9 1.00 12.69 52,63x1013 1
ia,2 1.22 5.16 §13.21 3
15.3 1.47 3.74 13.88 5
16.4 1.76 3.19 [4.63 7
17.2 2,24 2,84 15,88 10

mé = 16.2 Yp = 1.16

Table 3.2k Parameters of Le using
G from Table 3.2a.

has been reduced by 18.4/16.2 = 1.17 and the high
frequency gain by 4.59/2.63 = 1.74 (4.8 adb).

The next set of bounds are obtained using Pf = KfPh
with K. from Table 3.2b. These bounds are again dis-

played with dashed lines on Fig. 3.9 for comparison with

Poles Zeros
p C w A s w
|
1.8 .7 13.2 1 .45 3.2
.6 11 3.3
.8 50 18
.4 1100
.5 4120
K = 10.8 K_ = 1.43x10%3

Table 3.3a Parameters of & for

Lfl of Fig. 3.10.



N NS S .
11.1 | 1.00 0.8 {1.43 103 1 1
12.2 | 1.21 4.3611.73 3
13.1 | 1.46 3,1512.08 5
13.9 | 1.74 2.68(2.48 7
15.0 | 2.21 2.39 13,16 10

w! = 13.4 v, = 1.17

Table 3.3b Parameters of Lf using

G from Table 3.3a

with the previous set, and are shown solid on Fig. 3.10.

Data for the next L is given in Tables 3.3a and 3.3b

£
while Ligq is sketched on Fig. 3.10.

The next set of bounds are calculated using Kf
from Table 3.3b. These are shown dashed on Fig. 3.10,
where it is observed that they are quite clese to the
previous set, i.e., the algorithm has converged to an
acéeptable G.

Comparing data from Tables 3.1b and 3.3b, the itera-
tion has reduced oscillating frequency by the ratio
18.4/13.4 = 1.37 while lowering the high frequency

asymptote of L by 20log[4.59/1.43]1 = 10.1 db. This

1

is a significant improvement that should not be ignored.
It is notable that if the entire plant were P = Py

from Eq. 3.19, i.e., no high frequency gain variation,

then the loop transmission required in a linear design

is specified by the bounds in Fig. 3.8. Por the SOAS the
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Fig. 3.10 Bounds for Lo, (Juw) after obtaining
second G, and Lfl(jm) " using
third G from Table 3.3a.
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lower bounds of Fig. 3.10 are sufficient. Hence, pro-
vided the remaining S8OAS3 desion considerations allow the
loop transmission to be obtained, the SOAS is superior to
a linear design in this example even without any plant

gain factor uncertainty.

93]
?
Ut

Additional Considerations in the Ph Parameter

" Sensitivity Design

The method of synthesis in Sect. 3.3 which has been
demonstrated in Sect. 3.4 provides the designer with the
means for finding the minimum mean oscillating frequency
wé permitted by Fh parameter uncertainty, as well as

the uncertainty which is written
J [} —
w, € [mo/yh,woyh] = Qh . (3.24)

Yp may then be used in determining the width required for
the limit cycle filter in Sect. 2.3. There are other
lower bounds for m&, €.dg., the bound established by the
spread of gain uncertainty in Chapter II. Thus it may not
be possible to achieve the mé dictated by Sect. 3.3,
When this is the case some freedom is permitted to reduce
the uncertainty parameter ¥ The variation of Wy is
in the interval @,.

h h

has vanishing uncertainty at high

caused by the phase variation of P

Recalling that Py

frequencies (see Eg. 3.1 and Fig. 3.3), any increase in
mé can be expected to decrease the O variation. On
Tables 3.1b and 3.3b in the numerical example of the pre-

ceding section it is seen that a change of wé from 13.4
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to 18.4 reduces v, from 1.17 to 1.14. In addition, for
a change in plant phase A8 in the neighborhood of wé,
the corresponding change in Wg is proportional to the
slope of the loop transmission phase characteristic.

This phenomenon is illustrated in Fig. 3.11, where we see

‘that it is desirable to make the fEf(jm) characteristic

as steep as possible in this neighborhood. When wé must

7 > logw -180° . 1
' g ; ogw
| 1
ey | . A ‘Ji A8
-~ ! s/
o

" Fig. 3.11 TIllustration of oscillation frequency

variation proportional to phase slope.

be significantly above the value found from Sect. 3.3,

the frequency range between w, and the required wé can
be used to shape fEf(jM) for w e Q, with a very steep
slope. This is done by removing some phase lag above W,
and then introducing underdamped poles near wé. Fig., 3.12
qualitatively illustrates the appearance of Lf on

Nichols chart ccordinates when the above is implemented.
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Fig. 3.12 Shaping of L to reduce

£
Wy variation.

The validity of the disturbance damping boundary Byr
and boundary B2’ is open to question at frequencies above
wO/B (8 1is the quasi-linearity parameter of Eg. 1.16b)
where the forced signal describing function N becomes
ambiguous. The conservative approach is to avoid these
boundaries, although it might be shown experimentally that
this is not entirely necessary.

Clearly the synthesis procedure of Sect. 3.3 entails
a considerable amount of design effort, while we have
noted that other design considerations such as adapting
to large gain uncertainty with small limit cycle in
Chapter II may preclude the use of the minimum «' found

o

in Sect. 3.3. Therefore, the designer should ascertain
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approximately the achievable wé to handle gain varia-
tion and output limit cyele reguirements before carrying
out the synthesis of Sect. 3.3 in detail. In many situa-
tions the tedious design of that section mavy be avoided
completely, because the gain uncertainty and output limit
cycle magnitude considerations obviously demand a larger

loop transmission.



CHAPTER IV
DESTIGN CONSIDERATIONS FOR

DISTURBANCE INPUTS TO THE SOAS

4.1 Satisfying Quasi-Linearity and Output Limit

Cycle Constraints for Disturbance Inputs,

Disturbance inputs are taken as deterministic signals
D applied to the plant output as depicted by Fig. 4.1.
Disturbance signals that act internally, or at the plant
input, can be translated to equivalent signals at the out-

put. The nonlinear element N is characterized by DIDF

D
r Gy /H X G,H p z 1
R—< e . - ¥ N £ e Py = y S C
D !
Fig. 4.1 SO0AS structure with disturbance input D.
N, =M /A (4.1a)
N = Mf/A, (4.1b)
when guasi-linearity constraints
max
b 1% (8)] < B /o (4.2a)
w, < mO/B (4.2b)

are satisfied. Simultaneously, the limit on maximum mag-

nitude of output limit cycle component,
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M6, Gu )R {Gu )Py (Gu )| < m/x_, (4.3)
must be satisfied. In this eqguation [Kmth(on)] =

max

WEW[P(jwo)|, where the plant ignorance is characterized

as in Sect. 1.3, Eg. 1.17. Chapter II presented a design
technique to satisfy (4.2) and {4.3) when xe(t), the
extreme forced signal input to N, is due to a command
input R in Fig. 4.1. Hexe some modifications of that pro-
cedure are considered when xe(t) is the forced input to N
due to disturbance D.
The plant output signal due to a disturbance in Fig.

4.1 is

Zg = —DLf/(l+Lf) ; (4.4)
where Lf is the forced signal loop transmission

L. = N_G,G,KP._ . (4.5)

b £f7172"h

Let us take an analysis viewpoint temporarily. Suppose

Xp is the forced input at N due to commands and Xy is that
resulting from disturbances. From Fig. 4.1,
v - TR _ AlTR
R NfGZHKPh KleGZHPh
K MAéRHP i ifL F o (4.6)
17£°27 h £

b

where we have used A/K = Al/Kl, and T = FLf/(1+Lf).
For a disturbance input -D, we get similarly,
A.D L
« 1 rf]
£

D KleGZHPh 1+ L

i
XRbﬁg. (4.7)

|



le4a

Suppose Xa has been designed as in Chapter II (for step
commands and a Type 1 plant), so that the dominant part
of Ao is

Gy

XR = mk: - (498)

‘The frequency response, [XR(jw)l, is sketched in Fig. 4.2
showing w, < w_/B, as is often the case because the
limit cycle constraint, Eg. 4.3, forces @, to be high. If

the disturbance inputs &i'I[D(s)} have approximately the

XG5 %G|

L3

d o w /B W

¢ 4 b / ° ° »logu
4

=logw

"—|D (jw) /R(Fw) F(juw) |

(b)

Fig. 4.2 Comparison of forced inputs to N
for commands R and disturbances D.

same speed and magnitude as the prefilter output signal in
Fig. 4.1, & “'[R(s)F(s)], due to command inputs, then by
(4.7) the two forced signals at N will be the same, and
will both satisfy the quasi-linearity constraints. Since
xR(t) is slower than required to satisfy (4.2b) (mb <
wO/B), we could speed up xD(t) to xD(t) = XR(wot/Bwb)

without violating (4.2b). This gives
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qub

X{S):_‘—"_v
s+wO/B

D (4.9)

which is also sketched in Fig. 4.2a.

For the system structure being considered here (step
R and Type 1 plant) F tends to be a low-pass filter.
Thus, if D(s) and R(s)F(s) are to be comparable signals
with respect to their propensity to violate the quasi-lin-
earity constraints on N, then D(s) must have smaller band-
width than R(s). In particular, a step D(s) will probably
be an unacceptable input to an SOAS that has been designed
on the basis of step R(s). We now return to the synthesis
problem.,

The nonlinearity forced input is obtained in terms of

the plant output signal Zp as
“f
Xg = ﬁ;a;ﬁﬁﬁg ’ (4.10)
with
Zo = RT = RFLf/(l+Lf) {command input), (4.11)
and
Zg = ~DL./(1+L.) (disturbance input). (4.12)

When there is plant uncertainty there is some extreme set

of plant parameters Phe which produce the extreme Xe

due to disturbance input -D,, so that

L, = DeLfe/(l+L (4.13)

fe} ’
In view of Eqs. 4.10 thru 4.12,the synthesis procedure
when Ze and Xe are due to a disturbance input is

exactly the same as explained in Sect. 2.3 when Xe is
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due to a command input, except that in all the equations
of that section 7_ = R,T, is replaced by 2y =
DeLfe/(l+Lfe)° Thus we can parallel many of the equat-

ions from Sect. 2.3 in the following. Beginning with

AL = Aagup (4.14)
‘we get
X = Xel - Aeze
e H MfG2HKePhe
- et )
f e 2 "he fe
and
o o 09"pDelee Ay . (4.16)
el NfK G2Ph (1+Lfe) s+mb b4

q, and W, are parameters of Xe due to a disturbance, and
- the chosen form for Xo7 ©on the right of (4.16) is approp-
riate only if D has one pole at the origin. Recall that
L e(jwo) = -Mf/MO, Using this, solving for G2 from

(4.16) , and substituting in (4.3) yields

Xo Gugd| ’ el(ij)E
Ae i iAeH(jm )I
IM P, (juw )
hm %% (4.17)
> Bmligm [ P 3000 | |5 macy

This is the eguation corresponding to (2.56), but now
applying to X, 9enerated by a disturbance input.
Suppose D, = qd/s, and no limit cycle filter is used

max

so H =1, and [x ()| = 9, giving A = ag w, .

Then (4.17) reduces approximately to
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oK _q.im |
s}m 2K mdemMD oot (4.18)
b jmo o MeMy | 0
or approximating |jw0+mb[ = w, we get
R mimM_-m |
e f o
qd f_ Q-K [M I - (4319)
ml o

For step D_, and H = 1  there will be a value of W,
satisfying (4.17) only if the step magnitude satisfies
(4.19). 1In other words, without a limit cycle filter the
system will only tolerate very small step disturbances
and continue to operate in a quasi-linear fashion. For
example, using numbers from the design of Sect. 2.4,
i.e., K /K =m= .1, o =3, and |(Mf-MO)/MD| =1,
yields dq 2 -0033. This is smaller than the smallest
value of limit cycle magnitude, which has peak value
m/Km = .01.

Continuing with the design equations (which are not
just valid for step D+ but for any De with one pole at
the origin), we assume that W, can vary in

w € [wofy,woy] = . (4.20)

Solving for |H(jw)| from (4.17),
K m|Mc-M_|
Kmlaqublm

Xel(jm)
D (Jjw)

Phe(jw)
th(jw)

w e 8

=3

|H(jw) | = o| (4.21)

1 w #F 2.

LY

1t

I
Again taking D_ = gy/s, we get [H(jw) | Kem|Mf-M0|/
[Kmlaqd|M0|] for w e @, which is entirely given by
specifications and is independent of the choice of CPRE

If De has at least one additicnal finite pole, then the
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right side of (4.21) will increase with w and the higher
the choice of W s the less depth required in H(ju). In
any event, the design problem is to find a suitable com-
bination of mé, A, and H(jw), and this is accomplished
by iteraticn on wé and A in precisely the manner exp-

" lained in Sect. 2.3 when the extreme Xo is due to a
command. The only difference is that a new defining
function for H(jw), {(4.21), is used. If no narrow limit
cycle filter is used, then the minimum permissible
oscillating mé/y is the smallest frequencv satisfying
(4.17) with H = 1,

Suppose now that mé, A; and H have been found. How

is the design completed? Solving Eg. 4.15 for G? gives
hog w, D L
¢ = MR X pr E(llJf—E )y C (4.22)
f7e"el " he " ""fe
We cannot determine G2 uniguely until Lfe has been

designed. Lio can be designed in the manner detailed in
Sects. 3.3 and 4.2 to satisfy both parameter sensitivity
and/or disturbance attenuation specifications over the
low and intermediate frequency bands, while constraining
it to satisfy Lfe(jwo) = —Mf/Mo at the O selected
above. When Lt is thus obtained, G2 is completely
determined and Gl is solved from

Amwafe

G,/q. = —s—rs— .,
17 2x MfKeG2Phe

Lastly, the prefilter F is obtained in the same manner as

(4.23)

in Sect. 2.3 as
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F = Te(1+Lfe)/Lfe . (4.24)

This completes the synthesis steps for the case when
minimum wé is determined by the need to satisfy quasi-
linearity constraints (4.2) and output limit cvecle con-
straint (4.3) with a disturbance input.

We have seen that the constraints of this section
are difficult to satisfy (if they can be satisfied at
all) when the disturbance inputs are steps. However,
this will not always preclude the use of an SOAS when
step disturbance inputs are present. Usually one is
more interested in simply attenuating the effect of the
disturbance at the system output, rather than shaping
the disturbance response function in any particular
manner. Therefore, it may, in some cases, be acceptable
to design the system so that it remains guasi-linear for
all commands, but operates nonlinearly for some distur-

bance inputs.

4.2 Design to Satisfy Disturbance

Attenuation Specifications

As suggested in Sect. 1.4, specifications on the
maximum disturbance transmission magnitude as a function
of freguency may be given. The synthesis scheme for
satisfying such specifications is considered below, and
shown to be a simple extension of the technique used in
Chapter III for sensitivity specifications.

We assume the bounded plant ignorance
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fw e W
Pis,w) = I{(W)Ph(s,w); {4.25)
(Rw) e [R .%,1,

with P(s,w) » K{w)/s® as

s| - =, and the bounding
sets W, [Kl’KZ]’ and the plant structure known. AsS
‘derived in Sect. 3.2, the eguivalent plant for forced

signals (command or disturbance) 1is
P, = K.P._ , (4.26)

where

Ke = Mg/ |M_G(Gw )Py (Gu )| o (4.27)
when the forced signal loop transmission is written

L =NGGKPh=GP

£ = NGy Gy (4.28)

£
From the system structure of Fig. 4.1 the disturbance
transmission to the system output is

1

Th = T9m.. -
i

(4.29)

Specifications are taken as an upper bound on lniTD(jm)l
vs. w, which is to be satisfied over the range of par-
ameter ignorance for the equivalent plant P.. The
specifications on ln|TD(jm)| = lnll/(l+Lf(jw)| is
easily translated to a set of boundaries on Lfl(jw)
G(jm)Pfl(jm) when bounds on the ignorance of P, are
known. The method for doing so is explained in Appendix

C. As in the sensitivity design, the ignorance in K¢ is
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not known at the outset so it is meglected in finding the
first set of bounds for which Pe = Ph is used. The net
result is a set of Nichols chart bounds for Lfl' Once

such bounds are obtained the design procedure for finding

an optimal L satisfying them is exactly the same as

fl
given in Chapter III to satisfy sensitivity bounds. In
fact, if both sensitivity and disturbance attenuation
specifications are given, the design should be carried
out to satisfy both simultanecusly. At anv freguency,
say w;, @ boundary, Bs in Fig. 4.3, for Lfl(jwi) is

obtained by the technicque of Appendix C to satisfy the

sensitivity specification. Similarly the boundary Bd of

(db}

| g () |

Lf(jw)

Fig. 4.3 Composite boundary. for Lfl(jwi)
due to sensitivity and
disturbance specifications.

Fig. 4.3 is obtained from the disturbance response

specification for the same Lfl(jmi). Then the boundary

with greater [Lfl(jwi)] must be respected to satisfy both



sensitivity and disturbance response specifications.
Hence, the only alteration of the design technique in

Chapter IXII is in the calculation of the bounds for

Lfl (:B[.Ul) n



CHAPTER V

EXAMPLE OF SOAS DESIGN AND SIMULATION

5.1 Design Specifications

Listed below are the necessary specifications for
a complete SOAS design in the context of this paper. It
will be evident that the specifications are selected to
take maximum advantage of the design efforits previously

invested in Sects. 2.4 and 3.4.

Structure

The design will be implemented with the same feed-
back structure of previous sections, shown again in

Fig. 5.1.

F | Gl/H X - G2H P

P
-

Fig. 5.1 B8O0AS structure,

Nonlinear element (saturation)
The nonlinear element is taken as a saturation with
parameters of the characteristic defined by Fig. 5.2.

The DIDF is



N
G

Nf = Mf/A

Il
1

MO/A aM/ A | {5.1a)

2M/ A, {5.1b)

with guasi-linearity constraints

Moz ()| < B/a; o > 3 (5.2a)
w, < w /Bi B > 3. (5.2b)
]
3
£,
)
s |
ol
M=2 —>
} Input
L.

Fig. 5.2 Saturation characteristic.

Plant

The plant is specified by

K a e [al,a2] = [1,10]

-
¥

P(s) = KP, _(8) = —/——
h s (s+a) K e [K,K,] = [1,10]

1

(5.3)
where a and K are uncorrelated.

To avoid excessive overshoot and ringing due to

disturbance inputs the specification

L (ju)
TL (30)

< 2=2;Vw (5.4)

114



115

is imposed. This specification was discussed in Segt,l,3,
Eg. 1.18. The disturbance inputs are assumed sufficiently
small that no specific transmission requirements are im-

posed, and also that such inputs will not intolerably

.violate the quasi-linearity specifications.

The transfer function magnitude must lie between
the bounds given in Sect. 3.4, Fig. 3.7a, repeated here
as Fig. 5.3 for convenient reference. These bounds
establish both sensitivity and the absolute level for

|T(jw) |.

The extreme (largest and fastest) command input

anticipated is

R (s) = q./s; Ja | = 1. (5.5)

The maximum output limit cycle magnitude over all

plant conditions is
m= 0,1, (5.6)
Note that this is a 'peak' value.

We assume in the absence of plant uncertainty the

oscillation frequency may vary by + 6% due to parameter



/™~
=

[T(dw) | .

cation envelope for

ig. 5.3 Specifi

F

Thus

ariation in the compensating elements.

T
v

(5.7)

when the plant parameters are fixed.

System Design

2

5

scilla-

inimum o

+

The first step is to determine the m

10n sensi-

ting freguency allowed by the transfer funct

in Sect.3.4,

This has been done

ty specification.

ivi

t
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and the minimum frequency found.to'be‘m0 = 13.4rps with
variation parameter due to plant uncertainty of Y= 1.17.
The data for this minimum bandwidth sensitivity design

is given on Tables 3.3a & b.

Next the combined constraints of quasi-linearity
(5.2) and output limit cycle limit (5.6) are considered.
This part of the problem with the present specifications
was treated in Sect. 2.4. There it was found that
mé = 28.2 rps is an achievable oscillating fregquency
with a moderately complex limit cycle filter H, which
is significantly better than is possible without the
filter. This value of course takes precedence over the
smaller value demanded by sensitivity.

Before proceeding with the design we need to con-
sider two additional reguirements on the oscillating
frequency. First, recall that w, must be high enough so

that the assumed N is appropriate over the transfer

£
function bandwidth. Fig. 5.3 shows that this bandwidth
is permitted to range over approximately [4,13] rps.
However, the actual variation will be considerably less
because of the inherent SOAS property of removing
nearly all high frequency gain wvariation (of course at
high frequency Nf is ambiguous anyway, but the effect
extends to the intermediate freguency range also)}. The

crucial question is does the transfer function vary from

4 rps upward, or from 13 rps downward. The former is
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true in the present problem because in Sect. 2.4 the
extremes of plant and transfer function, T, and Phe'
used for the extreme X, were the small gain~bandwidth
cases., Thus wé = 28 rps is judged to be sufficiently
-high for transfer function bandwidth requirements.
Lastly, wé must be large enough to render the
sensitivity design meaningful.. There is little question
that 28 is sufficient, since the last sensitivity
specification was at about 3 to 5 rps (Fig. 3.10). Thus
we proceed to design for wé = 28 rps.
The design wvalue of MfG2 was determined in
Sect. 2.4, and is obtained by multiplying Eq. 2.72 by

the appropriate X = 1.22 found in that section. The

parameters are listed on Table 5.1.

Poles , Zeros
P z W z C w
6 10
25
25
50
50
— _ . 8
Ko = 220/Mf K, = 2.06x10 /Mf

Table 5.1 Parameters of G2.

Now G1 must be obtained such that the Nichols chart

sensitivity boundaries are satisfied over the low and



intermediate frequency ranges, and so that the limit

' = 28
9]

cycle is established about the chosen nominal
rps. For this purpose it is easier to work with the
entire loop compensation G, defined in Sect. 3.2 as

GGy, and the forced signal equivalent plant P, i.e.,

G P (5.8)

I £e

il

£

MeP

= = - = K P (5.9)
£ IMOG(ij,Ph(]woﬂ

£fh-

A function for G which satisfies the sensitivity
bounds, but sets W, too small, is available from

Table 3.3a. This function is modified, primarily by
moving the complex pole pair near w, Up in frequency,
enough to establish the new center oscillating fre-
quency near 28 rps. This is again a cut and try process
and the result is tabulated on Table 5.2. By increasing

wé significantly the spread of w_ variation is

 Poles 2eros
P | & W z 4 w
S
.4 | 60 18
.4 |00
5 |120
K, = 24 K = 1,26x10""

Table 5.2a Parameters of G for Lfl
shown in Fig. 5.4.
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wo Kf KQ;;, Koo a |
26.9 | 1 24,0 | 1.26x10%%] 1
27.6 | 1.03] 8.26 | 1.30 3
28.4 | 1.07{ 5.14 | 1.35 5
20,1 | 1,11} 3.82 | 1.40 7
30.0 | 1.191 2.85 | 1.49 10

w; = 28.4 Y, = 1.057

Table 5.2b Parameters of Lf using G

from Table 5.2a.
considerably reduced, as is the spread of Ke variation;
both may be checked by comparing data from Table 3.3b
and 5.2b. Recalling the iterative procedure for satis-
fying the sensitivity bounds, from Sect. 3.3, the new
‘G has to be checked and possibly adjusted somewhat to
insure that the final Let satisfies the bounds corre-
sponding to the final G. Here only the completed design
is given with the data of Table 5.2 and the plots on
Fig. 5.4. 1In this figure L = GP with

£l hl

Phl = 1/[s(s+l)]. Frequency responses of Lf for

several values of Ph are given in Fig. 5.5.

M

= = = L
To extract Gl, Lfe = pre = GKfePhe- AeKeGlePhe.
Thus
A
G. = ereG — qxalmbeeG (5.10)
1 KerG2 KerG

2
Recall that A, = aquwb 18 the value of A when the

pPlant is P = K P, , where K_ =1 was used for this
e he e
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Fig. 5.4 Bounds for Lfl(jw) and plot of
Lfl(jw) using G of Table 5.2.
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design in Sect. 2.4. Keo is the Kf from Table 5.2b

that pairs with Pre = 1/is(s+10)] used in Sect. 2.4,

i.e., K = 1.,19. Also from Sect. 2.4, A = 1.22
fe

b = 6. Msz and G are given by Tables 5.1 and

' 5.2a respectively. Collecting the data, Gy has the

and

parameters tabulated on Table 5.3. For completeness

Poles 28108
p Z w Z z w
10 oD 27
.4 60
.4 100 18
.4 120 25
25
50
I so
— _ 6
KO - -95qx KCD - 5o32qxx10
— _ 5
= nl3Ae = 7.27AEXl0

Table 5.3 Parameters of Gl"

the parameters of H are given in Table 5.4.

The system prefilter F is cobtained from

F

Te(l+Lfe)/Lfe, (5.11)

where

(6)%(25) 2 (50) 2
€ (s+6)2(s+25) 2 (s+50) 2

. (5.12)
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Poles ' Leros
P 4 W z r 0w
.08 22 ' 025 25.6
.08 | 35 i .04 30.5
KD = ,838 K = .82

Table 5.4 Parameters of H.

This T, is the lower bound in Fig. 5.3 and the ex~
treme transfer function used in Sect. 2.4. The para-

meters of Lfe/(1+Lfe) are listed in Table 5.5. One

Poles Zeros
P C w z 4 @
1.88 1 .15428.3 4
12.7 .211} 64 18
-379] 98
-499 1121
K, =1 K, = 1.49x10%%

Table 5.5 Parameters of Lfe/(l+L Yo

fe

finds F in (5.11) with 10 zeros and B poles, hence
unrealizable. We assign additional pole pairs to

X, and T_ at 98 and 121 rps with damping factors to

cancel these zeros of 1 + L These poles are

fe’
sufficiently far off that they should have no appre-

ciable effect on the time responses xf(t) or c¢(t).
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Poles ! Zeros
D c w z 7 =ml w_
a 1.88 | .194 | 28.3
6 12.7 | .511 | 64
6
18
25
25
50
50
K, =1 K_= 51.7 B

Table 5.6 Parameters of F.

The resultant prefilter is given by Table 5.6. The
design is now finished, with all functions in Fig. 5.1
completely identified except for the selection of i
or Ae.

Before proceeding to simulation of the completed
design we can do some verification by using the quasi-
linear model, i.e., we calculate the linear response
functions for Fig. 5.1 when N 1is replaced by the
gain factor Mf/A. The particular A that goes with a
given plant is accounted for by using the appropriate
gain factors from Table 5.2b. First the transfer
functions T(jw) are calculated and the magnitudes are
shown by Fig. 5.6. In this figure the lower response

(a = 10) is identically Te which is also the lower
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bound in Fig. 5.3. The upper bound (a = 1) is very
close to the upper bound of Fig. 5.3 up to about 5 rps
and then falls below the specification beound. Thus our
goal of barely achieving the sensitivity specifications

- is met and not exceeded except at higher frequencies
where it is unavoidable (and where T{(jw) is ambiguous}.
Finally we verify that the bandwidth, =~3db point , lies
within [3.5,7.5] rps which seems compatible with

w; = 28 rps.

Shown in Fig. 5.7 are the system outputs c(t),
which will be useful in evaluating simulation results
later. For a = 1 the overshoot is rather large
(= 35%), but this is permitted by the transfer function
specifications.

Next, shown in Fig. 5.8 are several xf(t). From
these we can check the validity of the selections made

for P and T, when designing the limit cycle filter

he
in Sect. 2.4, i.e., does the a priori selection made
truly yield the largest and/or fastest xf(t). Figure
5.8d4 permits easy comparison. At small t they are
identical since for large w in the frequency domain
the Xf(jw) are identical. For larger t the de-
signed xe(t) {a = 10) consistently has larger magnitude
peaks than the remaining two signals. It does not seem

possible to detect any meaningful difference in speed

of the xf(t) by simple inspection of Fig. 5.8.
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Fig. 5.8d Simultaneous plots of xf(t).

The conclusion drawn is that the selections of Phe'

T, are quite satisfactory. However, the change in
xf(t) with Py in the present example is rather small
so the selection of Phe is probably not a c¢ritical
factor in this design. Note that the proper pairing of
T, with Pie is verified by Fig. 5.6. That is, we
designed the transfer function Te on the lower speci-

fication bound so that for values of P other than

h
P |T(jw)| should increase, as it does in Fig. 5.6.

Finally let us compare the resultant xe(t) in Fig.5.8a
with the design value in Sect. 2.4, Fig. 2.12. The two

signals are identical after an initial transient in
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Fig. 5.8a which is the effect of the added faxr poles.
This transient does exceed the Seckh. 2.4 design value
of (Imix|xe(t}|= 22, by about 35%. This narrow pulse
should not cause any appreciable effect on the output
- e(t), because even if the nonlinear element does trans-
mit it, the smoothing effect of the plant integrator

will essentially remove it from the system output.

5.3 Digital Simulation of Command Response

The system design of the previous section was
simulated using the MIMIC digital simulation language
as adapted for the CDC 6400 computer.

It is noteworthy that the simulation was first
attempted with an ideal relay nonlinearity. In propa-
gating the limit cvcle through the ideal relay the zero-
crossing times must be detected with rather high accur-
acy, and errors in the detection produce low frequency
transients, or ideally subharmonics, in the nonlinearity
output signal. The difficulty is highly accentuated
in the oscillating system because of the extremely high
low frequency gain compared to the gain at the limit
cycle frequency wo(see Fig. 2.9) betweeﬁrthe non-
linearity output and the system output. This causes the
low frequency error terms to be greatly amplified at
the system output, and these components swamp out the

limit cycle signal. The net result was that an
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extremely small digital simulation integration step size
was required, making the simulation very expensive in
terms of computer running time. This difficulty was re-
moved by changing the nonlinear element to a saturation.
.For an ideal relay with output level M the output
error is 2ZM when the simulation fails to detect a zero
crossing. For saturation, the output error will be pro-
portional to the time increment by which the gzero-cross-
ing is missed, and therefore reduces rapidly with inte-
gration step size, making it possible to execute the
simulation at reasonable cost. The lesson of this
experience is that, although the synthesis is independent
of the particular nonlinearity used, there will indeed
be practical considerations that give some nonlineari-
ties advantages over others in a given application.
Shown below are simulation results using a satura-
tion nonlinearity with the parameters listed on Fig.5.2,
and using q, = 1, A, = Aaqub= 22, The system input
is a unit step Re(s) = qr/s = 1/s 1in all cases.
Fig. 5.9 shows the output from prefilter F of Fig.5.1.
This signal is of course the same for all plant parameter
cases. Figure 5.10 shows the nonlinearity input signal
for two parameter cases. The forced signal component
xf(t) is essentially indistinguishable in these plots.
The system output c(t) is shown for several plant

parameter cases in Fig. 5.11. Comparison of these step
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responses with those of Fig. 5.7 shows that the non-
linear system response closely approximates the response
of the guasi-linear approximation used in synthesis.

The specified limit c¢ycle magnitude has been scaled on

" several plots of Fig. 5.11 and shows satisfactory agree-

ment with the observed limit cycle.

i)
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£

Prefilter Output

e T L2 NIz 208 260 8.1 S48 5.7

time~sec

Fig. 5.9 Digital simulation plot of
prefilter F output.
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This section presents some disturbance response sim-
ulation results obtained from the system design of Sect,
5.2. Any evaluation of these results must be rather
qualitative, since the design does not conform to any
‘specifications on the disturbance response. Nevertheless,
they do provide useful information about system perform—
ance for disturbance inputs. All simulations were per-
formed with P(g) = KlPhe(s) = 1/[s{s+10)], because this
parameter set is the worst case in terms of magnitude
quasi-linearity constraint (5.2a).

It is obvious from the treatment in Chapter IV that
the system will not be quasi-linear in the presence of a
unit step disturbance. Regardless, a unit step input,

D = qd/s = -1/s 1in Fig. 5.1, was simulated and the
resultant system output is shown in Fig. 5.12. 1In Fig.
5.12b the disturbance input is applied at one half the
limit cycle period (ﬂ/wo) later than in Fig. 5.12a.
The radical difference in the two responses demonstrates
the well known phenomenon that the oscillating system
response is time dependent when the quasi-linearity con-
straints are violated. Both responses exhibit a predom-
inant time constant 1 which is believed to be the time
reguired to return to quasi-linear operation. Later plots
show this time constant to be dependent on the magnitude
of step input. Both responses of Fig. 5.12 appear quite

undesirable for most applications.
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Next, a smaller step, dgq = -~.025, was simulated.
The magnitude of this input was obtained by using the
design values of Xel' Phe.Ir th, H, and other regquired
parameters from this chapter in Eqg. 4.21. Evaluating
this equation at Wy = 30 rps (corresponding to Pie from
‘Table 5.2b), the given g is obtained. This does not
gaurantee guasi-linear performance however, because the
present design values of 'Gl, G2, and H have not been
selected to produce quasi-linear operation for any step
disturbance input. In Fig. 5.13 the freguency responses
of the forced input to N are compared for Re = 1/s and
Do = -.025/s. It is observed that the signal due to D,
is rich in freguency components above W, This will be
the case irrespective of the step magnitude, i.e., a step
disturbance input can be made small enough to satisfy the
magnitude quasi-linearity constraint, but the frequency
constraint cannot be satisfied. Fig. 5.14 shows simu-
lated outputs for the input D, = -,025/s. These exhibit
time dependence and overshoots an order of magnitude
greater than the input, hence they are guite undesirable
responses.,

We know that if the signal £(t)

LR (s)F(s)]
is applied as a disturbance input, then xe(t) will be
the same as for command inputs. The signal €£(t) is

shown in Fig. 5.9. This signal was time scaled to ine

crease its speed by factors of V2 and 2, and applied as
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a disturbance input in the digital simulation. The sys-
tem outputs obtained are shown in Fig. 5.15, and appear

guite reasonable.

- R T
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2 d a =10
O L}

. D(S) = "’"l./S

' (applied at

t = 1 sec.)
3
R

b, 00 3 . t.20 L% (] 2.8 2.60 8.0 2.4 .
time-sec

Fig. 5.12a System output for unit
step disturbance.
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CHAPTER VK
SYNTHESIS OF AN EXTERNALLY

EXCITED OSCILLATING ADAPTIVE SYSTEM

6.1 Introduction

It is possible, with the proper type of nonlinear
element, to externally excite the oscillating signal
which cireculates in an oscillating feedback system rather
than using the limit cycle which occurs naturally in
the SOAS. Such a system, discussed below, will be termed
an externally excited oscillating adaptive system (EEAS).
The two degree-of-freedom feedback structure to be used
is depicted in Fig. 6.1. Ab is a zero mean periodic
excitation signal of frequency w, which we take to be
sinusoidal. This input need not be sinusoidal provided
GleP is of sufficient low pass character to maintain

the validity of the describing function used for N.

F, G,, and G are linear time-invariant compensations

1 2
to be synthesized, and P is the plant or constrained

A b

O
F G X . % G P
R— P l; o N 2 a—C

-1

e
e

Fig. 6.1 EEAS feedback structure
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part of the system for which parameter ignorance as
detailed in Sect. 1.3, Eg. 1.17, is assumed. The general-
ity and limitations of this structure have been pointed
out in Sect, 1l.3.

System performance specifications and optimization
criterion for the EEAS are identical to those taken for
the S0AS and stated in Sects. 1.3 and 1.4 respectively.

With the exception of one new constraint, to be de-
veloped in the following section, it will be observed
that the EEAS synthesis methods developed below in large

measure parallel those for the S0AS.

6.2 EEAS Nonlinear Element

At the outset it is reqguired that the nonlinear
element N in the EEAS possess all the properties re-
quired for the SOAS. These properties were treated in
Sect. 1.2. In particular it is necessary that the DIDF

components

No: MO/A (6.31a)

N Mf/A {6.1b)
represent a satisfactory guasi-linear approximator when

max

t le(t)l iA/O!., (Guza)

and
wy < mO/B . (6.2b)



All quantities in the preceding two equations are as
previously defined, e.qg., in Sect. 1.2, Eg. 1.7 and 1.8.

If A, is zero or sufficiently small in Fig. 6.1,
and the loop transmission has in excess of 180° phase lag,
'then the system will self-oscillate. Indeed, with Ao =0,
we have the SOAS treated in the preceding chapters. Thus
if the DIDF in (6.1) is to be used, the system must. be
synthesized under conditions that prevent the occurrence
of the natural limit cyecle, i.e., there must be only one
sinusoidal input at N. We shall give sufficient condi-
tions for limit cycle guenching below.

Assume there are two sinusoidal inputs to N
giving x{(t) = A sin w,t + B sin w _t, where W, is the
limit e¢yecle frequency and W, is the frequency of the
excitation Ao. Using the techniques of Sect. 1.2, the
two sinusoid input describing function (TSIDF) may be
calculated by repeated application of Eg. 1.4b, and the
components labeled NA(A,B) and NB(A,B). Letting Ly
denote the loop transmission seen by the B sin wﬁt com—

ponent, the limit cycle will be gquenched provided

|Lg (e )| < 1. (6.3)

max
B

Then the limit cycle guenching condition may be written

Suppose that [NB(A,B)[ = £(A) exists and is finite.

£(a) |6, Gu )6, (Fu )P (Ju ) < Ly P. (6.4)

In general this condition may be guite complicated to
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satisfy. A survey of a few odd, static, single-valued
nonlinearities seems to indicate the following. For
nonsaturating nonlinearities {(A) does not exist.
However, these are of no interest because their DIDF's
~are not of the form required in (6.1). For three satur-
ating nonlinearities (ideal relay, relay with dead zone,
and saturation) whose TSIDF's are plotted in [14], £(A)
has the characteristic shown in Fig. 6.2, and asymptotic
value £(A) » y/A where ¢ 1is a constant., The de-

parture from the

Fig. 6.2 Character of mgxlNB(A,B)] ='g(A),

asymptote occurs when A is so small that the nonlin-
earity is rapidly changing character, e.g., saturation
when A is so small that the element is linear. For
the ideal relay with output M, E(A).x ¢/A = .855M/A for
all A > 0[15]. We restrict the EEAS synthesis theory
to nonlinear elements such that ¢ exists and g(a)<yp/A

for all A > 0. Using this restriction



%IGl(jmﬂ}Gz(ij)P(jmﬂ)[ <1 (6.5)

is sufficient to quench the limit cycle and DIDF theory
may be applied. Defining M0/¢ = p and recalling the

oscillating signal loop transmission is L0 = NoGleP =

M
(o]
A GleP we get
lLo(jm-n-) l < p' (G.Ea)
or
|Lf(jw“) l < p[Mf/Mol L (Goﬁb)

Egq. 6.6 gives the limit cycle guenching constraint clear-
ly in terms of the loop transmission to be synthesized,
i.e., it is merely a minimum gain margin. This is the
gain margin mentioned briefly under specifications in
Sect. 1.3, Egq. 1.21, and it is taken as a specification
for the EEAS design. It is not surprising that a gain
margin emerges as the condition for limit cycle quench-
ing, however, it may be somewhat surprising that p > 1
is satisfactory for some nonlinearities. For the ideal
relay o0 = Mo/w = 4/(,855m) = 1.49. We have verified
satisfactory limit cycle quenching by analog simulation
with ILO(jmﬂ)l = 1,26(+2db).

In all subsequent discussion of the EEAS, Eg. 6.6
is taken as a specification and it is therefore assumed
that the nonliearity input signal is composed of a

forced signal component xf(t) and a single oscillating

component due to the excitation input A,.
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6.3 EEAS Sensitivity to Plant Gain Changes and Behavior

of Loii@b)' with Changing Plant Dynamics

The most attractive property of the SOAS is its
inherent zeéro sensitivity to plant gain changes. In this
section it is shown that the EEAS retains this property.

If the oscillating component of X at the input to

N in Fig. 6.1 is denoted by X,r then

X = -Aoelez? - XOLO . (6.7)
Mo 3¢
Lo = NOGlGZP = K—GlGBKPh’ and at Jugr Xo(jwo) = Ae-”",
thus (6.7) becomes
aed? = “Re, (30)G, (§u )P, (50 ) [A + M el ® (6.8)
1 110g) Gg 04, h (3} o o) ' °
or
— . . . ¢
A/K = IGl(jwo)Gz(jwo)Ph(ij) [ |AO + Me | . (6.9)

To obtain an expression for ¢, observe that (6.8) is

~L_{(jw_} .
o] o} Jjd

Aej¢ =

from which we write

_ -1 sing 7 _ .
i) Tan E*Q/Mo T coscj)l— & (Jw ) + = (6.11)

provided Mo is real. If MO is complex, ¢ is replaced

. : -1
by ¢ + éﬁo and M_ by ]MO] in the Tan ~ term of
(6,11). 1In either case ¢ is independent of K, and it

follows that A/K ='A1/K1 in (6.9) is also independent

M_.K
. . . . _ R i
cf K. Substituting this in Lf = NfG1G2P = —KI-GlePh
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shows the desired zero sensitivity to pure gain changes.

Similar analysis will show that the zero gain sensi-
tivity property is retained with the excitation A in
Fig. 6.1 applied to any point between the nonlinearity
output and the varying gain factor. The input point shown
has been chosen because it yields system eguations in
convenient form. If, for example, Ao is applied at the
input to N, the equation corresponding to (6.9) is A/K =
IAO/K - ej¢MoGl(jwo)G2(ij}Ph(jwo)], and A/K is not con-
stant due to the AO/K term on the right.

Now consider the behavior of Lo(jmo) as plant
dynamics change. From Eg. 6.11 the plot of ¢ wvs. éf(jm )
of Fig. 6.3 is constructed. Taking the excitation freq-
uency u, constant, fE (jw ) will vary with plant par-
ameters and cause ¢ to change along its respective AO/Mo
contdur. However, if AO/MO < 1 there are either two
solutions, or no solutions for ¢. Fig. 6.3 shows that a
unique ¢ is obtained for every EEofjm ) if A /M > 1.
For this reason AO/M0 > 1 1is assumed for the remainder
of the EEAS synthesis.

Rearranging (6.10) slightly,

‘rNOAej¢ SRR

L (jw_ ) = - x = : : . (6.12)
o'’ 0o 3¢ 39
[Ao + Moe ] [AO/M.O + e’7]

This is the relation that fixes the ILo(ij)I character-
istic at a particular level. The magnitude of (6.12) is

shown on Fig. 6.4, and it is easy to show that if
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{deg)

¢

i

60 20 0

-180 ~140  -100

f&o(jmo) (deg)
Fig. 6.3 ¢ vs,. é& (jw_ ) with AO/Mo as a

parameter (¢ is an odd function of

é& (jm:) + 7.

k'}~
A
W s B R e el e e e e =
0 4 .8 1.2 1.6 2.
Bo/M

Fig. 6.4 |L0{jmo)l vs. A /M with ¢ as a

-parameter,
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A/M, > 1, L Ge b < 1 for all ¢ e [-120°, +120°],
From Fig. 6.3 this translates to the same result for

. _rno o .
ZLO(]M ) +180° £ [-60°,+60°], or in an even larger range
for larger AO/MO. This means that if W, is taken close
to W the loop transmission will be less than unity even
Ehough the limit cycle quenching gain margin p might per-
mit a larger value. »

From (6.12) we also get [Lo(jmo)/(1+Lo(3mo))[ =
I—eJ¢Mb/AO] = MD/AD' which is constant. Thus, as plant

parameters vary Lo(jmo) varies along a contour of fixed

[Lo(jm)/(l+Lo(jm))| on the Nichols chart as shown by Fig.
6.5.

[T (30 |

Locus of Lo(jwo)

Fig. 6.5 Variation of Lo(jwo) on Nichols
chart coordinates.
The above description applies to M, real, as it is
for all odd, static, and single-valued nonlinearities. M
will be assumed real for the remainder of thisg chapter.

Although somewhat more tedious, the extension to complex
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M is straightforwaxrd.

6.4 Synthesis of an Elementary EEAS

In this section we shall develop the necessary
equations and synthesis steps for a simple EEAS where the
plant is assumed to have only gain uncertainty. The
.apprcach of Sect. 2.1 is followed with the intent of
stripping away the complexity of the most general design
and exposing the basic design conflicts.

The structure in Fig. 6.1 is taken with N having the

usual DIDF,

N
o]

1l

MO/A (6.13a)
Nf = Mf/A ' (6.13b)

under guasi-linearity constraints
max
t Ixf(t)! iAl/u (5»14&1)

w2 mO/B . (6.14b)
In addition, we now have the limit cycle guenching gain
margin

g Ged | < e, (6.15)
where w, satisfies Lo(ij) = -180°,

Let the plant be P = KP K/[s(s+a)] with the gain

1l

h

factor ignorance given by K ¢ [Kl,Kz], and Kl’ K and

2
a are known. To complete a set of specifications take
T =,w§/(s+wa)2, Re = qr/s, and assume the maximum mag-

nitude of oscillating signal at the system output is
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khonnded above by mn.
The output oscillation magnitmde ]Co(jwo)] is
written from Fig. 6.1 as

CA |G, (G )P (jw) ]
lc (Gw )] = = 2 "o o
o 4% {1+ L_{Ju J]
QO 0

{6.16)

Taking maximum plant gain K,, and imposing the magnitude

2
coenstraint gives

AOKZ]Gz(ij)Ph(jwo)[

- . -1
[T+ % (Gu Y] m (6.17)
From (6.12) AO/[1+LO(ij)| = MO/ILO(jmo)I giving in
(6.17)
KM, 16, (Jo )Py (Gu ) | < m|L (Go ) |. (6.18)

The extreme forced input signal to N is

RT . ART
Xe = N G,P = M K G, P (6.19)
and solving for Gy r
A RT
G2 = ﬁm o (5920)

Evaluating G, at wg and substituting in (6.18) vyields

o=

KM Re(ij)T(jmo)|
> R AGTIR . (6.21)
1 I 1°f o'J fo} l

This inequality is the counterpart to Eq. 2.9 for the
S0AS, and indeed reduces to (2.9) if we recall that in the

SOAS |Lo(jmo)l = 1. Thus, the same arguments used in
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choosing X, to minimize w, would seem to apply to the
EEAS. What we have not seen yet for the EEAS is that
minimizing O will optimize the design in the sense of
noise transmission discussed in Sect. 1.4.

The constraints on Lo(jw) are summarized as

'follows. For limit cycle quenching
L Gu ) | <0, (6.22)

where p is now the design value of quenching gain maxrgin,
presumably smaller than the theoretical gquenching limit,

Due to the limit on cutput .oscillation magnitude

" R.A.M
. _ T2 o

L Gw )| >
o'“To’l = TR mM_

Re(ij)T(jwo)
Xeijwo)

!, (6.23)

with Ay satisfying gquasi-linearity constraint (6.14a).
The loop transmission magnitude is fixed by

et |

= -1 {6.24)
IA /M + e3¢|
QO o]

In contrast to the SOAS, the designer must fix |LO(jm0)|
in the EEAS by selecting a suitable combination of )
and Al This will make the loop transmission shaping
task more difficult and some cut and try may be necess-
ary.

Temporarily choose X, in the form previously used
for the Type 1 plant and step inputs, i.e.,

. - T
=} s+mb °

(6.25)
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Then Ay = og and inserting all the given guantities

in the right side of (6.23) results in

Ty | KZM'
. (3o 3| > °
(o} o — ]_Mf

wi(s+mb)

H

o (6.26)

Jug

%

2
s ( 8- (Da)

.The bounds for |[L (jw)| are sketched on Fig. 6.6.

Lower bound for |Lo(jub)l
RoBy M (R, (G0) T (jw)

271 o
Klme Xe(jw)

Kz/m|MOG2(jw)Ph(jm)|

wqgfper bound for |Lo(jwﬂ)|

‘ o o \i\\\\ > logw
i o
o \v\_
|z, (5w) |

Fig. 6.6 Boundaries for EEAS oscillating
signal loop transmission.

The foremost gocal in shaping Lo(jm) within the
constraints of Fig. 6.6 is to optimize in terms of noise
transmission as discussed in Sect. 1.4, i.e., to minimize
the high frequency asymptote of the loop transmission.

We assume that any sensitivity requirements due to param-
eter uncertainty other than plant gain will permit Ly

to be below the lower bound in Fig. 6.6. Otherwise, the
lower bound is not a constraint (in the present problem
there are no such sensitivity requirements, but they will

exist in the general design problem). [Lo(jm}] cannot
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assume its final asymptote until it has encountered the
lower bound and W, has been established along‘this
bound. This reasoning indicates that W should be min-
imized, i.e., the final asymptote should be assumed at
the lowest possible frequency. One may postulate W,
'1ower than w_» say at Bwb, in Fig. 6.6, in which case
L, Gu )| > p. It is difficult if not impossible to
satisfy (6.24) at this frequency with any reasonable L
when p > 1/2. However, ignoring this, note that the
lower bound has an excess of two poles (more in practical
designs), so if ILO(ij)I > p, [Lo(jw)l must then
decrease slower than the lower bound to avoid having 180°
of phase lag before reaching the upper bound at p.

The conclusion is that the optimum Lo(jm) has close-
ly the characteristic shown on Fig. 6.6. The shaping is
now explained in detail. As w approaches the boundary
intersection of Pig. 6.6, [Lo(jw)[ lies between the
bdunds, joining the lower bound at the intersection, and
following it until the far poles may be inserted. The .
poles must be inserted far enough out so lLo(jww)l <p
and to permit [Lo(jwo)[ to be established on the bound-
ary. For example, suppose p > 1 and w is at the
boundary intersection. Further suppose that we attempt
to choose w, = w_. From Fig. 6.3 ¢ = 0°, and on Fig.
6.4 ILO(jwo)! < 1/2. Hence the necessary [Lo(jwo)[
cannot be achieved; instead w, must be positioned far

enough above wy such that ¢ differs from zero by the
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amount required to obtain some |Ln(jwo)| > 1/2, Let Lg

shown be a trial value and assume that it establishes W
at the point labeled. How do we find w,? First,
recalling from Sect. 6.3 that AA/MO > 1, choose A, =
1.2M, for example. Using this n,, and {Lotjw) in
'Eq. 6.11 to get ¢(w) for Eg. 6.24, |Lg(jm)| is plott-
ed as on Fig. 6.7 over the frequency range where the
trial |L0(jw)[ is coincident with the lower bound in
Fig. 6.6. |Lg(jm)| represents the achievable |Lo(jwo)[

with this specific trial. The oscillating frequency is

lLg Gy |

o, (3} |

e ()

Et - -

O

FPig. 6.7 Location of oscillation frequency.

tﬁen chosen at the intersection. If the two curves do
not intersect A0 may be adjusted, or the far poles of
the trial loop transmission adjusted. If p < 1/2 (see
fig., 6.4) it will be beneficial to take W, = W because
a sméller A results. 1In this case the design is con-
siderably simplified in an obvious way, but for o > 1/2
this is not possible unless the optimality of the design

is compromised by allowing [Lo(jw“)| to be smaller than

‘required.
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It is now clear that X, should be chosen to minim-
ize the lower bound given by (6.23), and this is accomp-
lished by maximizing IXe(jw)|/Ai at w,. This is the
same criterion obtained for X, in the S0AS design, and
it is treated in some detail in Appendix A.

The remainder of the design for plant gain uncert-
ainty and no disturbances proceeds in essentially the
same fashion as the SOAS design in Sect. 2.1. '"The selec-
tion of X determines G, completely from Eq. 6.20,
then Gy is shaped to obtain the desired L,- Lastly,
the prefilter is obtained using the specified transfer
function from P = T(1+Lf)/Lfo

To compare the EEAS design of this section with the
SOAS design in Sect. 2.1, note that the preceding argu-
ments have shown that ILO(ij)]'i ]Lo(jwﬂ)l < p. Using

this in (6.26), and approximating W, o= Wy << W gives

_ M _K,aq

0, > wa[%%r‘pﬂ i (6.27)
Here it is seen qur/Klmp assumes the role in the EEAS
which qur/Klm has for the S0AS in Eq. 2.14. If p < 1
the EEAS loop transmission must have larger bandwidth.
For p > 1 it is conceivable that an-EEAS design could
have smaller bandwidth, however, p must be considerably
greater than unity to realize any significant advantage
from the EEAS design. The ideal relay and saturation non-

linearities have p < 1.49, which is not large enough to
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give more than trivial advantage to the EEAS fox the

design problem considered in this section.

6.5 EEAS‘Design to‘Satisfy‘Quasi;Linearity‘and'Output

Oscillation Magnitude Constraints with Practical

Specifications

Having looked at a rather idealized EEAS example in
the preceding section, a more general design scheme is

now developed. The plant will be characterized by

wEW
P(s,w) = K(W)Ph(s,w); (6.28)
K(W) € [K10K2]F

where w 1is the plant parameter vectér and only the
bounding sets W and [Kl,K2] are known. The oscilla-
ting signal at frequency o is supplied by an external
generator which has frequency tolerance parameterized by
Y, with

w, € [mé/y, @éy] = Q. (6.29})

A notch filter H is inserted at oscillating frequency
Wor as in the SOAS, giving the structure shown by Fig,
6.8. This filter has width @ and it is presumed that

AO D
F Gl/H X /G2H P
R —o et e O N o ,\h ¥ —} plly. C
Iy
. /
- An

Fig. 6.8 EEAS structure with notch filter added.
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¥y in (6.29) is adjusted to account for inaccuracies and
small parameter variations in H. The nonlinear element
N is characterized by DIDF (6.13) under quasi-linearity

constraints

max . -
" |xe(t)[ < BJ/o = Ag w, (6.30a)
oy < 6 /B . (6. 30b)

The sub-e again denotes the extreme nonlinearity input
signal (fastest and/or largest) and the function and par-~
ameter values that exist in the system simultaneously
with x (t).
e
With uncertainty in plant parameters of Ph the

limit cycle quenching constraint is

In the previous section we saw that W tends to be less
than Wy r and Fig. 6.5 shows that when this is true the
left side of (6.31) contains the plant parameter set pro-
ducing maximum phase lag in the neighborhood of W,

This parameter set will be used to define Lom‘

Constraining the output oscillation to have magni-

tude bounded above by m,

max |, K|G2(jwo)H(JmO)Ph{3wo}|
waWL‘o |1+ Lo(jmo)l

d

max |, KlGZ(Jmo)H(jmo)Ph(jwo)[
weW |0

L, (Gw,) | < m. (6.32)
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Variation in the factox ]Ph(jmo)/Lo(jwo)| with plant

parameters is dependent upon the shaping of ZEQ(jm)

near w.. For this reason the maximizing parameter set
for (6.32) cannot be determined until the design is comp-
lete. Further, we want to use (6.31) and (6.32) as
'bounds for |L,(jw) |, requiring that both inequalities
refer to the same Lo’ i.e., both be determined by the

same plant parameter set. Let Lom contain the plant

. . _ min .
K Phm defined as follows. Ehm(]wo) = wel {Ph(jwo) .

and Ph = th if and only if w ¢ Wm‘: W. Let Km =
max g « Then take
weW
m
m* = lemthFon) max Lo{?wo) < m. (6.33)
l Lom(jmo) weW KPhiijS —
Then
G, (Juw YH(Ju }P,. (jw I
M K | 2 4 38% J o) hm 4 o) < m* (6.34)
o) ml N ETON) l - .
om (o)

defines the lower bound for Lom(jwo), while (6.31)
defines the upper bound for Lom(jmw)° “The ignorance in
(6.32) has been lumped in the factor m*., The designer
must estimate this from study of his particular plant,
and then verify the estimate or make adjustments when the
first design is complete.

Continuing the synthesis steps, there is a pairing
P and T, as discussed in Appendix B that gives the

he

extreme forced input to . N,
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. AR T

% = el _ e‘eJe
2] H MfKeGZHPhe
#VlqumbReTe (6. 35)
MK GoHPy o

.In the preceding section it was shown that the optimal
functional form for Xe is the same as for the SOAS.
thus, in accord with Appendix A, assuming step commands

and a Type 1 plant, the form

'qwa
Xel = S+wb @X {6.36)

is chosen. @X will be used to include the necessary far
poles in Xe“
Solving (6.35) for G2 and substituting in (6,34)

yields, after some rearrangement,

Xel(on) 'Xe(Jmo)
AeHijwoi Ae
5 Km Mo lRe(on)Te(on)lth(jwo)l (6.37)
el * z 7 . -
Kem Mf ] Lom(on) ,Phe(Jmo)!

This is the generalization of Eg, 6.21, and the EEAS
counterpart to SOAS Eq. 2.56.

Egs. 6.31 and 6.37 respectively provide the upper
bound for Logtdw,) and the lower bound for Lom (3u,) .
If no notch filter is used (H = 1) the resultant W is

shown on Fig. 6.9a. Lom(jmo) must be situated on the

lowest (solid) boundary of Fig. 6.%a above w,. and this
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5,
/Zzﬁﬁth‘*\«ﬁkﬂf“ K/ T MGy (Go)H () (5 |
o

-~ ! .
AR

{maximum)

LS Ll s

Fig. 6.9 Behavior of X, and bounds for Lom as

oscillating frequency Wy is decreased.

is accomplished by shaping {jw) _and selection of
om

AO as detailed in Sect. 6.4, LOm must be above the
bound for all W, € 2. Study of Fig.'6.3 and 6.4 shows
that as w, moves away from w, ]Lom(jwo)[ increases,

thus one need only work with the worst case value of Wy
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which is o /Y.
If the notch filter is employed we require its mag-
nitude characteristic. The basic equation for obtaining

[H(jw)| is (6.37), however, the value of ]Lom(jwo)l is

unknown. We can assume that [L__(jw)| is flat over

'[wﬂ,ymé] and take [Lom(jwc)l = p, yielding from (6.37)
N : :
m pKerI_. X q (F0) Fhe(jw) e g
AqqumeMo|Re(jm)Te(jw)lth(jw)|'
|E(jw) | =

1 ;ow g Q,

(6.38)

where Ae = Aaqwa, This should produce reasonable re-
sults when p < 1/2 and Wy and w. can be taken quite
close together, i.e., ¢ = 0 on Fig. 6.4, If p > 1/2
so that ¢ must differ significantly from zero, reguir-
ing that é: (jw_ ) differ significantly from -180°,
the approximation ]Lom(jmo)[ * p will deteriate. The
alternative is to use smaller p or m* in (6.38), but
how much smaller must be determined by cut and try.
Given a satisfactory p for (6.38), the problem of
determining 2, wé, and H is identical to that in the
SOAS detailed in Sect. 2.3, and therefore is not repeated
here.

Once mé has been selected by the method of Sect.
2.3 and all remaining constraints, sensitivity to Py s

disturbances, etc. permit the use of this value, the de-

sign proceeds by the same steps detailed for the SOAS in
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Sect. 2.3, except for the requirement to shape ZEQm(jMO)

e

and select AQ, A is kpnown from a A vs. mé plot as
shown by Fig. 2.7, |H(jw}| is given by (6.38) from
which a rational function is synthesized, and G, is ob-

tained from Eg. 6.33. Then G, is used to shape Lom(jw)

1
"in accord with sensitivity and disturbance attenuation
requirements (treated in the following sections), and to
shape {E (jw) at W, as explained in Sect. 6.4.

Lastly, the prefilter is obtained from F =T (l+Lf )/Lf v
le e e e

where Lfe = K;KeGlGZPhe'

The discussion in Sect. 2.3 regarding efficient
assignment of far poles to the @X part of X, and to
T, also applies to the present design.

To make a brief comparison of SOAS and EEAS, first
note the position of p in H of Eq. 6.38. Comparing
this H with that given in Eq. 2.57, the EEAS requires a
deeper notch when p < 1. When p > 1 there is a poss-
ibility of obtaining a smaller bandwidth loop transmiss-
ion with the EEAS. The aspect of the EEAS most likely to
make it superior to the SOAS in some applications is that
Wy does not change with plant parameters. In the SOAS a
significant portion of the oscillating frequency interval
& 1is contributed by the variation of plant dynamics in
P, and this effect is accentuated as the design is opti-
mised by reduction of Wy » In the EEAS W, will exper-

ience this variation, but We, will not, because this

frequency is presumably fixed to much smaller tolerance
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by the excitation source. Only w, must remain in the
notch filter in the EEAS, hence the notch can be narrower,
having less effect on xe(t), and ultimately can be
moved to a lower frequency than the SOAS permits. There
is no difficulty if W is not within the notch filter
"as long as [Lo(jwﬁ)f < p, and this has been insured by
using the worst case in (6.31). Of course, the require-
ment of an excitation source is a disadvantage in the

EEAS.

6.6 Synthesis of EEAS Loop Transmission to Satisfy

Transfer Function Sensitivity Specifications

The transfer function sensitivity specifications for
the EEAS are assumed in the form detailed at the beginn-
ing of Sect. 3.3, i.e., we are given bounds on the max-
imun transfer function variation Aln|T(jw)| (and poss-
ibly A{T(jw)) as a function of frequency. The system
structure remains as in Fig. 6.1, and the plant ignorance
ié as described in Sect. 1.3, Eq. 1.17. The approach for
synthesizing the forced signal loop transmission Lf(jm)
will be basically the same as developed earlier for the
SOAS.

First, it is necessary to write the forced signal
loop transmission as the product of a compensation trans-
mission G, and the equivalent plant Pe which contains
all the loop transmission ignorance, i.e., L. = GP,..

£ f
We have previously shown in Sect. 6.3, Eg. 6.12, that
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X

n "o . : :
L, (3w} = 57%6; (3o )6, (Gu )Py (Gu)

A

e

—— (6.39)
[Aa_/u_ + SLY

n.

"where the oscillating input to N is Ae3¢, Thus

.......... o

e (6.40)
|61 (5ug) Gy (Gud Py () |12, + M_ed?|

K/A =

and substituting this in the forced signal loop transmis-
gion,
Mg
Lf = NfGlG2P = E— KGlePh
M G.G,P

£7172°h
. . j¢
Gy (Ju )6, (Gu )Py (Fu ) [a, + M_el?

o 1
: , 7%
UG(JmO)|lPh(]mO)|[AO + Moej |

= GK P, = GP. . (6.41)
In the last equation the definitions
G = GG, (6.42a)
P I KePp (6.42b)
~ ,Mf .....
Kf = (6.42C)

l6Gu ) [P (Gu) 1A, + m_e?

have been applied. Recall from Sect. 6.3, Eg. 6.11, that

¢ - Tan 1-[9/M5li¢cos?] = [Lo(jwo) owo= [Lf(jwo) LR

(6.43)
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As with the SOAS, it is seen that the ignorance of the
dynamics of Py introduces a high frequency gain factor
Ke in the equivalent plant Pe and Ke contains some
parameter uncertainty. In the EEAS W is set by the
excitation source, and therefore does not change with the
" parameters of P. Thus we shall assume w, constant in
this section, and it follows that there is no uncertainty
associated with |G(jwo)|. The quantities ]Ph(jwo)l
and |A0 + Moej¢| both vary with plant parameters and
contain the ignorance of Kf ¢ albeit small for many
practical designs.

Now, using the method in Appendix C, we wish to
calculate sensitivity bounds on the Nichols chart for
Lf(jwi); i=1, 2, ..., n. Such bounds apply to a par-
ticular plant parameter set., Specifically, we shall
find bounds for Lfm(jwi) = G(jwi)me(jwi), where the
parameter set me is the set maximizing the plant phase
lag at w0 and O i.e., at high frequencies above the
varying plant dynamics. In the synthesis procedure of
this section we will take W larger than the maximum
W . Then the above selection of Pen gives Lfm(jw)
maximum magnitude over the plant parameters, as illus-
trated in Fig. 6.5. The limit cycle—quenching constraint

is

Me|Lop (Gu) [/M, = [Ley Gup) | < pMe/i (6.44)

Given a plant parameter vector w, we still require
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A, w

o and G in order to evaluate Pf at some given

of
frequency. Since w, and G are not available in the
first stage of the design, we shall neglect the uncer-
tainty in Ke and approximate Pf = Py for use in
finding the first set of Nichols chart bounds. Such a

"set of bounds is shown in Fig. 6.10 labeled

/L (Go) (deg)]‘

plMe /M|

L R e —

Locus of Lf(jwo)

—— —

Fig. 6.10 TIllustration of forced signal loop
‘ transmission shaping for the EEAS.
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Wyr Wopeaorll o The remaining bounds, Bl’ B2’ and Bd’
on this figure are generated in exactly the manner
explained for the SOAS in Sect. 3.3.
In Sect. 3.3 (page 82) five properties of the

minimum bandwidth loop transmission were given. Pro-

'perties 2. through 5. transfer directly to the EEAS by

replacing L., in the Chapter IIT statement with Len

Property 1. is replaced by constraint (6.44). Using
these properties as a gquide, the designer shapes

Lfm = Gth = Gme, and thus obtains the first wvalue for

Lfm and the compensation function @G.

Now a value of R must be chosen, and it must be

chosen such that L = M_.L /MO ~1is realizable as a

fm f om

solution of Eqg. 6.39. At this point we have a plot of
Le¢yr say as shown in Fig. 6.10. The following method
for selecting Wo is suggested. From consideration of
Fig. 6.4 and the specified p, choose a reasonable

A, > Mo' say AO = 1°2Mo' Then using the available

N~

f“gm(jm) plot the curve of achievable |L§m(jw)| over
the frequency range above W . On the same figure plot
|Lfm(jw)l° Both plots are depicted in Fig. 6.11, and w,

is chosen at the intersection. The technique is the same

|14, G|
. B G0 |
w'ﬂ' wO
- + - = ()

Fig. 6.11 Log¢ation of W,
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as we have used previously in Sect. 6.4, With R
selected, Lf(jmo) will wvary along a contour of constant
| (3w)/(M./M + Lo{jw))| as depicted on Fig. 6.10.

All necessary information is now available to cal-
culate Pf(jw) = KfPh(jw) without neglecting Keo There-
' fore Pf may be used to calculate a new set of Nichols
chart bounds for Lfm(jmi). The algorithm given in
Sect. 3.3 {page B5) can be applied directly to the EEAS
by replacing sub-1 with sub-m throughout. Using this
algorithm the designer iterates G +o obtain an optimal

L satisfying the P, parameter sensitivity specifica-

f
tions.

As with the SOAS, the design steps for satisfying
transfer function sensitivity specifications with mini-
mum bandwidth are rather tedious. Hence, the designer
should have some feel for whether the reduction in band-

width is precluded by other design constraints before

undertaking the procedure of this section.

6.7 EEAS Design for Disturbance Inputs

When the extreme forced input to N in Fig. 6.8
is due to a disturbance input to the system some change
to the synthesis steps in Sect. 6.5 are necessary to
insure quasi~linear operation. We shall denote the
extreme disturbance input by -D,- With this input
present; there is a plant parameter set P, o Which most

nearly causes the corresponding xe. to violate
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quasi-linearity constraints (6.30). Paired with this
plant is loop transmission Lfe’ and the plant output
signal is written from Fig. 6.8 as DeLfe/(l+Lfe). This
quantity is evaluated at Wy and substituted in place
of Re(ij)Te(ij) (the plant output for a command

'input) in Eq. 6.37 to give

Xel(JwO) ‘ Xe(Jmo)
AEH(ij) Ae
. Km Mo o De(gmo)Lfe(JwO). th(jwo)
= K Lom(jmo)(l+Lfe(Jm0TT- Phe (305) .

(6.45)
All gquantities in this equation are defined as in
Sect. 6.5. We are again faced with the problem that the
quantity [Lfe/(Lom(l+Lfe))| is not known precisely un-
til the design is complete. Hence this factor, at jmo,
is approximated by (Mf/MO)|l/(l—pr/Mo)] = Mf/IMo—prl,
and (6.45) becomes

l .
th(on)

Phe(jwo)

e
Xo1(Jug)
AeH(jmoY

Ky

—~ K _m*

De(jwo)

~ . (6.46)
MO M

£

m has been replaced by m* to absorb the ignorance of
the unknown factor discussed above.

For disturbance inputs the desian procedure to
satisfy quasi-linearity and the output oscillation mag-
nitude constraint is precisely as detailed for command
inputs in Sect; 6;5; except that we use Eq. 6.46 in

Place of Eq. 6.37. The ignorance in m* must be
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eliminated by iteration. For example, the first design
is performaed with m* = m, then if the oscillation is
too large m* is reduced appropriately and the design
carried out again.

As was the case for the SOAS, the EEAS design
‘ cannot be made to satisfy the frequency quasi-linearity
constraint (Eq. 6.30b) for step inputs. The SOAS design
for step disturbances is discussed at length in Chapter IV
and the comments there apply to the EEAS as well.

The above relates to satisfying quasi—liﬁearity and
the limit on output oscillation for disturbance inputs,
There may also be specifications on the disturbance
attenuation as a function of frequency. If so, these are
incorporated into the Nichols chart bounds on forced
signal loop transmission used in Sect. 6.6. The detailed
technigque for doing this is covered in Sect. 4.2 and in

Appendix C.



CHAPTER VII

EEAS SIMULATION

In this chapter some results are presented from
digital simulation of an EEAS. Due to the strong simi-
larity of the EEAS and SOAS design schemes an EEAS design
is not detailed starting from initial specifications.
Instead, an excitation signal is applied to the SOAS de-
sign of Chapter V and some theoretical predictions of
Chapter VI are verified by simulation.

For reference the EEAS structure is shown again by

Fig. 7.1. The nonlinear element N is taken as a sat-

F G,/H X ;\ G, H P
R—o—2—o—>=> e N o Drmemic > C
1
a —1 JL
- n

Fig. 7.1 EEAS feedback structure.

uration with the parameters given on Fig. 5.2. Study of
the saturation two-sinusoid input describing function
indicates the limit cycle will be suppressed for p <

1.49, i.e., the quenching constraint is
L (Ge )] < p = 1.49 . (7.1)

The plant P in Fig. 7.1 is specified by
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, a e [a,,a,] = [1,10]
K ; 1772 (7.2)

P(s}) = KPh(s) = .
K & [Kl,Kzl = [1,10]

s {s+a)

with K and a independent. This is the plant used for
the SOAS example in Eg. 5.3, The compensations F, Gy
92, and H are given respectively by Tables 5.6, 5.3,
5.1, and 5.4. These compensations determine the phase
characteristic of the loop transmission. This is shown
on Fig. 7.2 for two extremes of the plant pole over a

frequency band containing the oscillation freguencies of

interest.

AFEEEN RN, e o
AR RN T iR
— K E._ _..‘ B D
i v e ey
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RN PN I I R _
MR L N I —]

—~ N |

3 e o
L it - f f‘i LV

~— N i LN NN
|'h §:|1‘ P iﬂlf;@!“
Iy 1 "N AR IS
{ Il"'c [ LAY P R
iy RS
N Lty
L Fi '!ﬂ il IR
T R i 7
) St e
-— | K H RS
~ | f it
‘_‘Jo l—h 1 _ FHY " \
' L O T2 : S I
~J E i I o4 ]
i
LS
1 ¢ ; !

Fig. 7.2 Phase characteristic of loop transmission.

The excitation frequency is chosgn at Wy = 30 rps.
Using the SOAS design this choice is rather limited if W,
is to be kept within the notch filter H (shown in Fig.
2.11). From Fig. 7.2 we see that when the plant pole is
at -a =k-10, w, =w, = 30 rps. With the oscillating
component at the input of N written Xo(jwo) = Aej¢r
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w, = o implies that ¢ = 0°{see Fig. 6.3). R, = l..2Mo

= 3.05 is chosen, and from

GGy = e (7.3) :
L_{juw = v .
o'-0C , 10
[AO/MO + e’ ")
-this results in |L (jo )| = |L_(430)] = .454 . For
o " 'y o

. __© :
elther EEAS or SOAS LO = x5 GleKPh. For SOAS operation
|L0(j30)| = 1, while for the EEAS this decreases to .454

due to an increase in A and a corresponding increase in
the system output oscillating component. The input to N
and the system output for a simulation started at t = 0
as an SOAS, and with excitation A, applied at t = 4sec.
is shown in Fig, 7.3. After t = 4sec. the oscillating
signal magnitude should increase by 1/.454 = 2.2 as the
system assumes the EEAS mode. Fig. 7.3 verifies that this
does occur. The large transients in Fig. 7.3b are present
because initial conditions were not set to give an immed-
iate steady state condition. It is evident, by tracing
the effect of éE (jw.}) wvariation due to the plant pole
change in Fig. 7.2 through Figs. 6.3 and 6.4, that the
variation of ILO(jm0)| will be small,

Before simulating the step response, &onsider briefly
the sensitivity of the present EEAS to parameter changes
of P, . Recall for both systems we write the forced sig-

h

nal loop transmission as Ly = KPpo Neglecting the small

variation in Ke, the EEAS loop transmission is just the

SOAS loop transmission of Chapter V reduced in magnitude

ay}‘
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by 20log(.454) = -6.8db. This magnitude reduction
causes the EEAS loop transmission to violate its respec-
tive sensitivity boundaries on the Nichols chart. Using
Lf = GPf
Sect. 6.6 and Appendix C and shown on Fig. 7.4. Para=. .

the the boundaries are computed in accord with

‘meters of the EEAS I, are tabulated on Table 7.1. The

£

boundries apply to Len and it is seen that they are

4 K = 1 S0OAS EEAS '
a= 10 M
A = 1.,2M
. (o]
= 3.05 3
ﬂ i il
| . l
| |
a ‘I
Lo}
L]
— . |
s
" |
. I
|
.83 42 24 36 .48 K1 ] -8 96 1.0
time~sec/10

Fig. 7.3a Input signal to nonlinear element
in SOAS and EEAS modes.
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Fig. 7.3b System output in SOAS and EEAS modes.
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using
3.05.

7.4 Bounds for Lfm(jw) and Lfm(jw)
G of Table 5.2b and AO = 1.2MO =

w, Kf $ {(deg) KQ Koo a
30. | 1. -30. |12.7 |se6.66x10%3 | 1
30. .99 -23. 4.2 6.60 3
30. .99 -16. 2.5 6.59 5
30. 1. -9, 1.8 6.63 7
30. | 1.02 0. 1.3 | 6.78 10

Table 7.1 Parameters of EEAS L

f-

188
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viclated by up to 6.5db. Since lLf(jw)[ is smaller for
all w in the EEAS it should be expected that the step
response will be slower (it could of course be speeded up
by changing the prefilter F). Further, since the sensi-
tivity bounds are not satisfied, the EEAS step response
" can be ex?ected to change more with Ph’

EEAS step responses for two plant pole extremes are
shown in Fig. 7.5. These may be compared with similar
SOAS responses (on a different time scale) in Fig. 5.lla
and 5.11lb. Some time parameters from the two systems are
collected on Table 7.2, and these figures support the
qualitative predictions made above regarding the differ-

ences expected in the two system responses.

System a ty tg
SOAS 10 1.1 —
S0AS 1l .45 1.6
EEAS 10 2.2 —
EEAS 1 .55 1.9

Table 7.2 Comparison of SOAS and EEAS
step response characteristics.
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Fig. 7.5a EEAS response to unit step command
applied at t = 4 sec.
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Fig. 7.5b EEAS response to unit step command
applied at t = 4 sec.
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CHAPTER IIX

SUMMARY AND CONCLUSIONS

-8.1  Summary of the Oscillating System

Synthesis Philosophy

It has been found that the design of either of the
ogcillating systems considered herein is optimized with
respect to the effect of sensor noise on the plant by
designing for the minimum oscillating frequency Wy Lower
bounds are imposed on W, by several design requirements.
In particular, these are:

a) the freguency quasi-linearity constraint which
requires that the forced signal describing function
component for the nonlinearity he valid over the
bandwidth of the fastest forced signal input to the
noﬁlinearity, as well as over the bandwidth of the
fastest system ocutput.

b) the combination of magnitude guasi-linearity con-
straint and the upper bound on oscillating signal
component at the system ocutput.

c¢) achievement of the reguired sensitivity reduction
for ignorance or variation of plant parameters,
excluding the gain factor.

d) achievement of a specified disturbance attenuation.

Technigues have been developed in detail for determining
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the lower bound on oscillating frequency for each of the
factors above. The designer must first ascertain which
requirement dominates in his particular design, i.e.,
which yields the greatest lower bound on oscillating
freguency. Whenever possible, this should be done with a
.rouqh approximate design to avoid tediocus optimization
with respect to all of the above requirements. Once the
dominant reguirement is determined, the lower bound on
oscilléting frequency is minimized using the techniques
and considering the tradeoffs detailed in the preceding
chapters. Portions of the design emerge as a result of
the oscillation frequency minimization procedure, and the
remainder is relatively straightforward and explained

herein.

8.2 Concluding Comments

The oscillating system stands out as one of the few
nqnlinear adaptive schemes that have been put to practical
use. Heretofore, there has been no synthesis theory for
dgsigning such systems to meet practical guantitative
specifications. In this paper a synthesis theory is de-
veloped which proceeds from quantative specifications in
a transparent fashion to a design that is optimal in the
sense of sensor noise power at the plant input. All sig-
nificant constraints on the design are considered, and the
synthesis theory is demonstrated with numerical examples.

There is a distinct class of design problems for
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which the oscillating adaptive scheme is superior to a
linear adaptive design. The specifications and optimiz-
ation criterion used in this work are sufficiently close

to those used for linear adaptive design[22]

to permit a
valid comparison of the best possible design by both |
‘methods. Thus, it is now possible to qﬁantitatively
evaluate which of the two design methods yields the

superior solution to a given adaptive problem.
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APPFNDIX A

Nonlinearity Forced Input Function

In this appendix the nonlinearity forced input
signal is considered in some detail. The goal is to
choose this signal, subject to the appropriate con-
straints, such that the oscillating system loop trans-
mission bandwidth is minimized. The structure of
Fig. A.l is assumed and the forced input to N

denoted by xf.

A

Pig. A.l Oscillating system structure.

X

£ must satisfy the guasilinearity constraints
T xp (8] < A /o (A.1la)
W, < we /B, (A.1b)

which were introduced in Sect. 1.2. In Eg. A.l, w,
the oscillating frequency, Wy, is the bandwidth of

Xf(jw), A, is the minimum magnitude of oscillating

/28
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signal component at N, and o,B are the quasi-linearity
parameters of N discussed in Sect. 1.2. In Sect. 2.1,

Eg. 2.9, it was shown that Xg must satisfy
_ . max, .
utay) = 1% Gog) |/["F g0 ]] > [ulu) (3.2)

where U is completely determined in terms of given
system parameters and specifications. In the frequency
range suitable for w,, |U(jw)| is decreasing with g

so that the optimum X, which will permit minimum W,

is the function that maximizes y in (A.2). In Sect.
2.2 it is shown that the left side of (A.2) can, in an

idealized sense, be made arbitrarily large by choosing

Xeg = Kgy + Xy where Xen 1s given a constrained

£ fl

maximum effect on the time response and a complex pole

pair at Wy o

allowing any value for IXf2(ij)|, and
hence for |Xf(jw0)]. However, this X., is impractical
because of the acute system sensitivity to small
parameter variations. The design of a practical sz
is described in Sect. 2.3. 1In this appendix we want to
determine the function xfl, which is to be the rela-
tively 'smooth' low frequency dominant portion of Xf,
that will minimize the remaining burden on sz, or
allow the minimum w, 1Lif sz = 0.

For notational convenience we will consider

sz = 0 and Xfl = Xf. In order to deal with specific
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functional forms for X, some assumptions must be made
with regard to the system input and the plant. We
assume the plant has one pole at the origin (Type 1) and

R is a step input. Using the Final Value Theorem and
_ 1lim _
c{t) = S0 sC(s) =

stXf(s)Gz(s)P(s). For c(w) finite in the pres-

_ 1lim
T £

" Fig. A.l, c(=)
lim
s+0
sence of step inputs, Xf(O) must be finite and non-
zero, excluding poles and zeros at the origin in G,.
Summarizing, Xf(jm) is to bhe a relatively smooth

function having bandwidth Wy, < w,/f and with Xf(O)

finite. The simplest such function is

w

_ b
Xf(S) = S e (A.3)
b
which yields
p= —1 (A.4)

“ov1+1/82

£ = NgGG,P in

Fig. A.l, it must have the same excess of poles as RFG,

Since Xf = RFG;/(1+Lf) with L

(> 3), thus Xg in (A.3) can not be realized in the
assumed structure. However, sufficient far'poles

(>> wo) can be added to make Xf realizable with no
significance to the present discussion. On Table A.1

below several additional possibilities for X which

£
allow closed form calculation of u are tabulated.
These do not of course cover all the possible choices

for e but by varying the several parameters in the



Triall Xf(s) u
- 1 1
s+1 Y, 2+1
1 Cn s 1 .(n-l)!e(n_l)
(s+1)" (n-1) 27D (y 241y P/
(p/ (p-1))
P H l<p<wo P
(s+1) (s+p) Y, 2+1 Y, 2+p?
1 Dz <1 exple/vY1-z% Tan '{/1-z?/z}]
s2+2gs+1 /(w02*1)2+462w02
e (1/(p,-1)]
Py (stp,y) . w, 2+p, 2 max |1, P2 P, (Py=P,) /1o ipmP, > 1
p, (5+1) (s+p,) Ju 241 Y 2+p,? | em1f eyl
. 2 2
{1 < p, < u, YWy They ; otherwise
0 < p, < w, /w02+l v/w02+p22

Table A.1 Tabulation of some trial functions Xf(s),

T0¢



table a wide wvariety of functions are considered.
For the purpose of comparing the functions in

Table A.l define W, as the solution of

le(jwb)/Xf(O)’ =1//2 . For B = 3, Trial #1 gives
Y, = .316 with w, = Bwb = 3, PFor Trial #2 with n = 2,
U, = .575 with w, = Bwb = 3(.644) = 1.93. Thus Trial

#2 seems to be better than Trial #1 by the ratio yu,/y;=
1.82 (= 5.2db). This is true under the stated condi-
tions, but it‘is found that M, > M, for w, > Jei-1 =
2.53., Thus for practical oscillating frequencies Trial
#1 is superior to Trial $2 with n = 2, i.e., other
design considerations nearly always force w, > me.
Forn = 3, y, >y, for w, > J(e-2)7/2 = 1.64. It is
clear that in practical design Trial #1 will provide
larger 1y than Trial #2.

Investigation of the remaining functions of Table
A,1l is guite detailed. We shall simply summarize by
stating that no acceptable combination of parameters in
Trials #3, 4, and 5 produce a y that is larger than
than of Trial #1 with reasonable W, -

From the above it is concluded that Xf(s) from .
Eg. A.3 (Trial #1) gives the largest -u that is readily
available and this function is used as a standard for
Type 1 plants and step commands in the body of the paper.

It may also serve as a standard against which any new

function not considered herein may be compared.



203

For plants with other than a single integrator
and/or other than step inputs, an investigation similar
. to that above should provide the designer with sufficiént

insight to choose a reasonable Xeo
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APPENDIX B

" Determination of the Extreme Plant

" and Transfer Function

Using the oscillating system feedback structure on
Appendix A Fig. A.l, the forced component of signal input
to N is

.2 ..AZf

P MfKGZPh

(B.1)

where Zf is the forced component of plant output, A
is oscillation magnitude at the input of N, and Nf =
Mf/A is taken as the forced signal describing function

for N. The plant is characterised as
P(s,w) = K(w)Ph(s,w); wew, {(B.2)

wﬁere w is a parameter vector and only its bounding set
W and possibly constraints among its elements are known.
P,(s} 1is taken such that P, (s) » 1/s" as |s| + ». 1In
order that the assumed describing function hold, the

quasi-linearity constraints,
T x ()] < A/a . (B.3a)

0y, < mO/S (B.3b)

are imposed. Wy is the approximate bandwidth of Xf(jw),
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Wy the oscillating frequency, and «,8 are the quasi-
linearity parameters discussed in Chapter I. (B.3) must
hold for all system inputs and all w e W. Therefore, we

require that these inequalities hold for the worst case

Xf, which is written
X =_ g€ . (B,4)

The sub-e denotes that Xg and the accompanying function
and parameter values which most nearly violates (B.3),

i.e., the fastest and/or largest X In the oscillating

f.
system synthesis theory it is assumed that the permiss-
ible 2¢ are given by specifications. From this range

of Zgs and the possible P the designer must select

hf

Z and the accompanying P

e that do indeed produce the

he
extreme Xe“ This selection must be made before the de-
sign is carried out, so G, and the precise pairings of
JPh and Zf are not known.

It is admitted at the outset that we do not know how
to make the above selections in the case of an arbitrary
Plant and specifications on Zf. What is done below is
to make some observations that give the designer a rea=.:
sonable chance to make a good selectibn. If this select-
ion is incorrect, it will be revealed by the first comp-
leted design, and the designer should by then have the

insight required to make the correct selection.

For a command input Ze = R T , and for disturbances
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'Mf
it 1s Ze = "DeLfe/(l"I‘Lfe) ’ with Lfe = A_E;KeslG2Phe .

Presumably the expected range of inputs can be surveyed

to determine R, or D,. Calculating the ratio Xf/xe

while the command input is held at its extreme value,

a2 [ rFL,
Xy BLKCP |TH T
X, © By [RoFhge |
MfKeG2Phe 1 + Lfe

and canceling all the common factors

11+ Lfe
X ST+ g |Te (B.5)

The same manipulation for a disturbance input yields
exactly the same result. Therefore, P, Cis tﬁe same
?arameter set regardless of whether X, is the result of
a command or a disturbance. For command input Re we

can also write

AR [T l’P
¥_ = el he X - {(B.6)
£ AK [Te]l_ Ph:l e

The variation in AKe/AeK with plant parameters is of
the same order as the variation in |Ph(jmo)/Phe(jwo)|,
which tends to be small because Wy is well above the
varying plant dynamics and this plant ratio approaches
unity for large Wy Now suppose temporarily that the
transfer function sensitivity is to be quite small so

that T/T_ ~ 1 for all plants. Then
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X . (B.7)

Consider a plant Ph whose poles and zeros vary indep-
endently, e.g., with |Ph(jw)| i1ying in the envelope of
Fig. B.la. We have postulated in Fig. B.la that the ex-

treme plant is P, with zeros set to minimum and poles

~
\ 1

~ A|Ph(3w)|

~

AT T T N

I

\\\\\‘ S logw
~
w\\\\\\ | -
=Py (G0) | \

(a)

(b)

Fig. B.1 TIllustration of extreme plant selection.

set to maximum. The concurrent variation in Xe in
accord with (B.7) is shown in Fig, B.lb. As P, dev-
iates from Pl ot |Xf(jw)| becomes smaller than ]Xe(jw)l
for all w, but the bandwidth of Xf(jw) increases. It
is inferred from this observation that |xe(t)1 will

likely have the largest maximum value, but xe(t) will
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be the slowest xf(t)o Thus the plant that gives the ex-
treme X_.(t) with respect to (B.3a) is different from
the plant giving the extreme with respect to (B.3b).

This observation is supported by the following example.

Let P_= 1/[s(s+a)]l, a e [1,10}, and P =

h he
'1/[s(s+ae)]. Let X_ = 150/[(s+6)(s+25)]. 1In Fig. B.2
the wvarious xf(t) from Eg. B.7 are shown for three
choices of a,- In Fig. B.2a, with a, = 1, xe(t) is
simultaneously the fastest and smallest xf(t).

Conversely, with a 10 in Fig. B.2c, xe(t) is sim-

e
ultaneously the slowest and largest xf(t).

Recall in the synthesis steps where Xq is used
(Sect. 2.3 and 6.5), that the designer is most concerned
with constraint (B.3a). This constraint is used directly
in the equations of that synthesis procedure to obtain a
lower bound for the oscillating frequency. Once the low-
er bound is obtained, (B.3b) merely dictates whether it
may be used in the design. Since it is not generaliy
possible to select Po to give the extreme xf(t) for
both (B.3a) and (B.3b) simultaneously, it is clearly
appropriate to choose the extreme with respect to (B,3a},
i.e., the magnitude quasi-linearity constraint. The pos-
tulated Phe in Fig. B.la is the correct selection when
poles and zeros vary independently. For the more general
plant, a good choice of Phe Seems to be the parameter

set that minimizes |Ph(jw)| over the maximum portion of

the system bandwidth, obtained by inspection of [P, (j)|
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over the permissible plant parameter sets.
Moving now to the case where the transfer function
variation is not vanishingly small, it is quite reason-

able that the above selection of P remains valid.

he
Then it is necessary to determine which of the admissible
‘transfer functions T is the T that is paired with

Phe' With Phe
poles maximized) it tends to have smallest magnitude and

selected as above (zeros minimized and

least phase lag over the system bandwidth. A glance at
the Nichols chart, which displays the relationship be-

tween T/F

Lf/(1+Lf) and L, = N_.G.G,KP immediately

£ 7 V£°1%2%
leads to the conclusion that T, is the T for which
|T(3w)| is minimum over the system bandwidth.

In summary, the guidelines for choosing P, and
Te are as follows, Pre is the plant with minimum
IPh(jm)l and maximum p{iw), while T_ is the lower

bound of specifications on |T(jw)].
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Appendix C

Derivation of Bounds for L{jw) from Transfer

Function Sensitivity or Disturbance Response

Specifications

The technique for determining bounds on acceptable
loop transmission from specifications on transfer func-
tion sensitivity and/or disturbance response is detailed
below. The technique applies to any linear time-invariant

[18] and is

two degree-of-freedom feedback structure
taken from [22]. The structure in Fig. C.1 is used,
however, all two degree-~of-freedom structures are equiv-

alent with respect to the specifications considered

D(s)

R(s) F(%Q __G(g ?;s) . C(s)

U

_Fig. C.1 A two degree-of-freedom feedback structure.

o

herein; thus any other structure could be used, or could
be transformed into the structure shown. For the purpose
of providing insight into the meaning of the bounds for
L{jw) and how they are constructed a graphical method is
first presented, then a digital computer implementation
of the method is given.

In FPig. C.1 the plant P(s) is the constrained part

of the system given as a rational transfer function, but
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with bounded uncertainty of some parameters, i.e., P(s)
= P(s,w); w € W, where w is a parameter vector, and the
bounding set W is known along with any constraining
relations or correlation that may exist among the

elements of w. The loop transmission is

L{s,w) =

[}

z(s)P(s,w). {C. 1}
Since there is no uncertainty associated with G, the
plant variation may be written at some specific fre-

quency w; as

Aln[P(jwi)]

It

“A1n[G(ju )P (Juy) ] = Aln[L(ju,)]

Aln|L(jmi)| + jAé(jw.) . {(C.2)

The transfer function is

There is no uncertainty associated with F so that varia-

tions in T(jmi) are written as

f’F(jmi)L(jmi)
ALn[T(jw;)] = Aln|- (C.4)
1+ L{jw,)
L(ju,) /L(Jw )
“'Mn1+L(3m) /1+L(3w)

Thus both the given plant uncertainty and the specified
permissible transfer function uncertainty are expressed
in terms of L. Suppose thé% the maximum permissibile
transfer function uncertainty is specified by
Aln[T(jw) | < 1n[B(w)]; B(w) > 1. (C.5)
We shall show how this specification is translated to a

boundary of acceptable L(jwi) at the frequency W, .



First a number of discrete parameter vectors WP
r=1, 2, ... m are selected and the plant is evaluated
at Wy for each, giving the complex numbers Pr(jmi,wr):
r=1, 2, ... m. These points are plotted as shown by

Fig. C.2 on Nichols chart coordinates (ln|P(jw)| vs.

-180° T /2 (Gw) 0°

1n|P (0 |

|e—————-iP1(jwi) >

Fig. C.2 Construction of the plant template.

[Eiig)). The points are then enclosed to define a region
of plant variation as shown, which we shall refer to as
the plant template. The designer must select m large
enough and the W, with sufficient care to insure that the
eﬂtire region of plant variation is included in the temp-
late with negligible error. Since L(jmi) will vary with
the plant parameters, we will deal with a particular w,
which gives Ll(jwi) = G(jdi)Pl(jmi). To find a point on
the boundary for Ll(jwi} the template may be cut out of
Fig. C.2 and laid on the Nichols chart for L(jw) shown in
Fig. C.3, (which has been drawn using the same scales as
the plant template) keeping the coordinate axes through

Pl(jmi) parallel to those of the L(jw) chart at all times.

The L(jw) chart has contours of constant
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1n|L(jo.\)/'(l+L(jm))|.= Choose any angle /b(jw.) ;, Or equiv-

alently iLl(jmi) , and position the plant template on

Boundary of acceptable 1n[L1(jmi)]
| /
\ 7N

' £

= " Bl_.\\ I T

| 1né —nx

! .

EE S ln[Ll(jwi)l

i
]
' y
JL(3w) : '

~180° / f oo
'y D !

N AN ln|Giimi)|
' )

Fig. C.3 Method for locating one point on the

boundary of acceptable Ll(jmi).

this angle grid. Next the template is moved vertically -
along the chosen angle grid until one finds a point where
Egq. C.5 is satisfied with equality, i;e., until the temp-
late just fits between two 1n|L(jw)/(1+L(juw))| contours,
say 1lndé and 1n68i (Bi = B(wi)) as shown by Fig. C.3. In

this position the origin of template coordinates deter-

mines a point on the boundary for L. (jw.). Additional
Y y (Jwy
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points are found by repeating the process at different
angles,
A plant template is prepared and the boundary for
L, {jw) found at a sufficient number of discrete frequen-
cies to provide a high degree of confidence that (C.5)
.will be satisfied closely at any w by an L, satisfying
the bounds at the discrete frequencies. 0f course the
same plant parameter set is used for P, at each frequency.
The Nichols chart also has contours of constant

/i(jm)/(l+L(jm)) + 80 that given a specification of the

form
A/T(jw) < ¥(w), (C.6)

the boundaries for L, (jw) to satisfy this specification
can be found in the same manner as above. Fﬁr any ZLl(jmi)'
the greater of the In|L, (juw;)| determined by (C.5) and
(C.6) determines the bound that must be used to satisfy
both specifications.

Next we consider the bounds on L(jw) determined by
disturbance response specifications. From Fig. C.1l the

disturbance transmission is

_C..E =T = . 1 = . 1/L - v ° (C'T)
D D I+l  IFL/T < 14V
We assume the specification on Th is given as
In{T (jw} | < Inlp(w)]. (C.8)

Here we have a specification on the absolute value of the
transmission rather than the change. However, (C.8) must

be satisfied for all values of the plant. To find the



216
boundary for Ll(jwi) we first construct a template of
1/P(jwi) since Aln[V(jwi)] = Aln[l/P(jwi}]. Positioning
this template on a 1In[Vv{(jw)}l wvs. Zv(jw) chart, a boundary

for Vl(jwi) is found as demonstrated in Fig. C.4a. This

Boundary of ,

Boundary of acceptable ln[Lq(jwi)]

acceptable
In[V, (ju;)]

\ <

- Qk - \
Y4
A

Template of
Infl/P(jw)]

1n|v(3w) |
in|L(jw) |

(b)

Fig. C.4 Location of boundary points for Ll(jmi)
to satisfy disturbance transmission
specification.
boundary is then translated to its equivalent for L1(jwi)
= l/Vl(jwi) as depicted by Fig. C.4b.
Next a digital computer implementation for finding
the boundary for Ll(jwi) due to transfer function spec-

ification (C.5) is investigated. Let

Glju;) = gel® (C.9)

il

Pr(jwi) pre3¢r; r=1,2,...m. (C.10)
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Using T, T due to P,, P respectively in (C.5) with

a2l 2

equality and sguaring both sides yields

“Tr(jwi) 2_, P, ?i}gp2)3+2gp2cos(e+¢zj+l
?2t3mij TP, Iigpl)2+2gp1cos(9+¢l)+l

£(g) = 8. (C.11)
‘"It can easily be shown that f(+=)} =+ 1, f{(g) # 0, and £(q)
is finite for all real g and B+¢r # kw. Also, £'(g) = 0
has two real roots giving the gualitative sketch in

and 9, it is a simple matter to

Fig. C.5. Given P, P,

— flg)

2
,,._?.i___._//j_._________
§
l '

}
]
i

g, 0 g,

Fig. C.5 Graphical representation of Eg. C.1ll.

solve for the roots g,, g, of (C.1ll). Consider the poss-
ible results in determining the boundary for Ll(jwi) =
gp el (941

g,r g, complex: For this case there is no real g
satisfying (C.1l) and therefore at the given {Ll(jw.)
= 0+¢, there is no boundary point on the Nichols
chart of Fig. C.3. This case can occur if the per-
mitted variation in transfer function is larger than

the plant uncertainty.

g,, g, < 0: This gives two boundary points on Fig.
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C.3 on the angle grid atw/il(jwi) = 9+¢1¢180°, Thus
at fEl(jwi) = 0+¢, there is again no boundary for
Llijwi).
g9, <0, g, > 0z The negative root gives a boundary
point displaced 180° from the angle grid of interest
at 8+¢,. g, gives a valid boundary point for Ll(jmi).
g,r 9, > 0: This case produces upper and lower
boundary points for Ll(jwi) on the angle grid
Eﬁ(jwi) = 6+¢1. Ll(jwi) must lie below the upper
boundary or above the lower boundary.

The above observations allow us to construct an

algorithm for obtaining a boundary for Ll(jwi) as follows.

Algorithm for bounds on thjwi) due to Eq. C.5

Select plant parameter sets W.i r = 1,2,...m e W
such that the plant template boundary is satisfac-
torily covered.

Choose § = Zg(jwi) and solve Eq. C.1ll m?-m times,
i.e., for all combinations of |Tr(jmi)/TS(jmi)[;

r # s, getting roots 9.or 9 o =1,2,...m* < m%~m,

20"

Let
% — MWin .
R ISagm*{gla}
x — Mmax '
el 15a$m*{g2a}°
Iyg < F,y for all d, so 1f g¥ < 0 there are no

bounds. Otherwise, the lower bound for Ll(jmi) is at

plg:ej(e+¢1). If g% > 0 there is also an upper bound

6+9,)

at plgfej( . When there are two bounds the lower
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bound is higher on the Nichols chart (g% > g®) and
Ll(jmi).must avoid the region between the two
bounds.

3. Repeat 2. for as many 6 as desired to obtain the
complete boundary for Ll(jwi).

Treating specification (C.6) in the same fashion

_ Tl(jwi} B 1
EZTEEIT =Y., (C.12)

and after some manipulation
g%p,p, [sin(¢,-¢ ) -tcos(¢,-¢ ) 1+ (C.13)
g[p2(sin(6+¢2)—tcos(0+¢2))-pl(sin(e+¢1)+tcos(9+¢1)]—t =0,
where
t = tan(Ti+¢2—¢l). (Cc.14)
The equation for g locating bounds for Ll(jmi) is again a
guadradic. The bounds can be calculated by using the mag-
nitude algorithm given above with Eq. C.13 substituted in
step 2.
Lastly, the disturbance response specification of
Eq. C.8 yields
(gp) > + 2gpcos(8+¢) + 1 - 1/pf = 0. (C.15)
The bounds for this specification are calculated using
the same algorithm with (C.15) in step 2., which only
needs to be solved m times because (C.15) contains only
one value of the plant.
Listed below is a FORTRAN subroutine which calculates
the composite boundaries for L, (jw,) due to the three

specifications (C.5, C.6, and C.8). A representative
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output is shown using the plant P(s) K/[s(s+a)] with

K e [1,100])], a e [1,10], and specifications as listed
on the printed output. Also listed are PLANT subroutines
- suitable for evaluating the forced signal equivalent

plant P used in the S0AS and EEAS iterative designs for

'parameter sensitivity and disturbance attenuatien.
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SUBRCUTINE NIGAND(W,BETA,A1,DN-4A2,P8) nICREDOR
J. e SMAY, REVISED NDV, 72. MICHPDE®

REF. KOROWITZ ANN SIDI, INTERNATIONAL JOUANAL OF CONTROL . NICReA1R

VOL. 16, NB. 2, 1972, PP, 237-309. MNICR2B2E
RCUTINE LDCATES ROUNDS FOR G AND L1sGePi AT FREQUENCY We¢RFS) TCMICRCBPE
SaTISFY THE MOST RESTRIETIVE OF nICRABFE

1. MAXCABSETLIRIII/MINCABSET(UNI ) I=REIACT) LS Pl kY

2. MAXCARGLTL JWID I~MIN(ARGET( JWIII2RETAC2)LDFG) NIrBIPA3E

3. MAXCABSETRCJWIII=RETA(S) N1CREBAP

If BETA{I)Y TS NFGATIVE THE SPECIFICATION IS IGNCRED. MICREB4S

USER ™yUST SUPPLv SUARQUTINE PLANT WHICH EvALUATES NICREASE
PC1,1¥sPLANT MAGNITUDE AND P{2.I13=PLANT ANGLE IN RANIANS hICRFERS

FOR N PARAMFTFR SETS. n1CRZOARE

PS IS SKWITCH WHINH ALLOWS USER ROUTIME TO RFAD FLANT PARAPETER AICRPOARE

DaTa OGN FIRST CalLl. QF PLANT, NICRPB7E
BOUNDS ARF COMPI'TED FOR ANGLE OF L1 ON (Al1.A2) 2T INCREMEATS AIcQs7®

D2 IN TCEGRFES. Kirpreag
DIMENSION P¢2,50),0FTA(3) NICROGRE

1 FORMAT(1K1,10X,*N]I~HOLS CHART BOUNDS AT FREQUENCY=#,F12.4,/71k ,10XNIrArdGe
2,%RETA({1)=#,FA. 4, BFTA(2)=0,FB.4,% RETA(3)=e,FA.4./1HD, NGBy @GS
310X, %RCUND G-ANGLF®,4X,8G=-MAGS,IX,sG-MAG(NR)+, 2, AICRr1Q¥
4eL1~ANGLF®,3¥,#L1=MaGS,2X,#L 1 =HAGIDAY#//) M CBp1p®
2 FORMAT{Ak L1SX.F1n.4,22X,F18.4,% NO SOL"TION®) MNICRELIIE
3 FORMAT{1H ,1PX,*LOWFR®,/F1Q.4} AICcRrL1®
4 FORMAT(1H ,.1QX,c||POFRs,7F10,.4) MICA®]2E
S FORMAT(1h ,3X,.®STARILITY LIMIT ENCOUNTERED®) pICAy2%
" IF{PS.ED.A.) CALI PLANT(P.W.N.PS) MNICRBPL3E
IF{PS.EQ.B.) RETIAN MICRALIE
MRITELS5:t) W.BETA MNICRALAY
BETAZ=BETA{)#e2 ANICRAgp4C
BETAL1=1.~BETAZ MCRFLISE
BETA3=1.-1./0ETA(I)ru? ACRPLIG®
BETA4=3,141G9278RETA(2) /180, MICR?16E
CALL PLANT(P,H, NP} hICRa1hE
Al=A1-2BQ.2P(2,1),%,1415927 AICRAYY TR
10 Al=A1#3.1415927718", MICR>178
GLM==1. hIrg180
GUM=4 .E2 K8, 8
lF(BETﬁ(i)-LT-G-) Gn T 29 aicavioeg
CALCULATF BOUNRS FOR TRANSFER FUNCTION MAGNITUDE SPECIFICATIOM.AIfA 168

po 15 I=1.,A nIcar2me
pa 15 J=t,h ANicRz2p8
IF(L.FR..Y 60 TO 15 h1cBy 249
CL=(PLl, YeCOStAT=P(2,1})=RBETAZP{1, [)oCOSCAI+P(2:0)) )2 (Pt1,1)} MICRvELE
2aP (1. J)#EETAL) nICAv220Q
C2z(P (1, Yoe2=(RETA(1)OPCL, 1)) we2) s (PUL1. DePL1,1))0a2eBETAY) MCRe27%
c3z=Cieep-7 pIraraze
1FC¢C3.LT.?2,) 50 TO 15 (8 {4 T2-1 L1
Gi==C1-5QRT(r3) MR Pa0
G2a-2.#C1-G1 hnIERT 248
1F(G1.LT.CLM) GUM=RY NICRy 259
IF(G2.GT.GLMY GLMaG? A1CAP24S
15 CONTINLE MNICRG 240
20 GLaA=-1. ACBR2at
GUA=1,E2¢ NICAP2TE
[F(BETA(2).,LT.0.) c0 TO 30 nicaF27e
CALCULATE AOUNPS FOR TRANSFER FUNCTION ANGLF SPECIFICATION. ArACPAQ

pa 25 1=1,h NICRP2RY
po 25 usi,h AICRP294

IFCIEC-u} GO TO 28 nICRP292



25
h )

35
L 1)

45

se
a5

49
65

TOTANCBETAGP{2.13=P(2,4))

CO=P{1,03eB¢ 1 )olCINAPI2,13=Pi2, 3 )=TaC0SIB2, 1) =P (2,J1))
CL=CP i1, [I0¢SINCatoP(2. D)) =ToCNSLALPLA, 1)) }=P(1, )
2(SINEALSP(2,0))+Tern50alaP¢2, 03300742, 0C0)

C2=2=T7C3

CIzCioe2-02
IFC¢CI.LE.QA,) GO TO 25
G1=~C+~8SCRT(C3)
G2=+2.9C1=61
1IF(61.L.T.GLAY GUAERL
IF(G2.6T.6La) GLA=g?
CONTINLE

GLD=-1,

GUnsi . E22
IF(BETAL3).LT,.A) n0 TD 49

CALCULATF ROUNDS FOR DISTURBANCE RESPONSE SPFCIFICATION,

DO 35 [=1,n
ClaCOS(AL1+F¢2,1))/P¢1.1)
C2:C1o82-RETA3/P(1,1)802
IF(C2.LT.g.1 GO fD 35
Gilz-C1-gQRT(C2)

62:=~2,.,4C)=G1

PFEG1.LT.6LD) fUN=GL
IF(G2.GT.GLN)Y GLL=G2
CONTINLE
GL=AMAXLIIRLM,GLALGLD)
GU=AMINL(GLM, GLEA,LGHD?
Al=A1%182,/3,1415927
AGP=41+1BP.oP(2.,13/3.1415927
[S=8

TL=0

IF(GL.LE.®,) GO TO 5.
GLDB=2Z.=2106104GL)
GLP=GL*P(1,1)
GLPDE=ZD,23,0618¢{G1P)
WRETE(6,3) A1,GL.GLNB, 4GP, GLP,GLPDR

CHECK IF PRESFNT LOWER BOUND IS UNSTARLE FOR aNY PLakT,

DO 4% I=1.M
AL=41+180.4p(2,1)/3,1415927
GP=aGL2P(1.])
IFCAL.LT.{-1RR.),aANN.GP.GT,1.) ILel
CONTiNUE

G0 TO 55

1821§+1

IF(GL.LE.O.) GO 0 &7
GUDPB=22.%AL 0G1R(GIN
GUP=CHeP(1,1)
GUPDB=23.#8. DG1p (G 1P}
WRITEf&.,4% A!:GU;GUHB:AGP.GUP-GHFDB
G0 T0 &5

[S=218+1

IFC1S.E0.2Y WRITE(S,2) Ay, AGP
IF{IL.EQ.1} WRITE(4,S)
IFCIL.EQ.1} RETURN
IF(AGP.LT.A2) RETURN

A1=A1-CA

GO T0 19

END
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AGRP3A0
NICRv3@E
M1CREI1Q
MiCcRE31E
nICRA3ZR
AICRr3I2E
MICRK3AP
NICEp33E

A Fanoadan
WAL AV I

MICAN34S
ANICRP3SE
ANICRr 358
AcRp3se
Arap3ee
NICRZ37¢
MICB378
AcRr3ge
MICAr3gE
NICBP3GE
NICAp3sE
MNICRR4 Q¢
hICRRaQS
NICcRZA1E
NiCcRe4E
NICAraZE
MCRRZ4ZE
NICARvaZD
MNICAWRE 3R
AICcAr44p
NICRP 445
MNICRrr 452
MICRE4ARBE
NICACAET
MICAr 468
Alcarere
NICR?47%
hICRr48E
MNICRP4p8
ANICR74G%
MCRE4QE
niCRAeSAe
MICRPSAE
MICRES1R
AICR@S1E
NICRPS2E
MICRAS2E
NICRPS IR
ANCRESXE
NICRES AR
MNICRaBal
MICRvE5E
MICR, 55%
MICARSAKD
MNIrArSes
hICRPSTR
hiCBR,57%
AICBpSRY
niCRRSAs
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SURAROUTINE PLANTC(P . W . N.PS)
ROUTINE GENERATES VALUES OF PLANT WITH VARYING GAIN, POLES.
AND ZERCS FOR CALCULATION OF NICHOLS THART AQUNDS,
DIMENSTION P(2,50) ,n{1E),PRILPIP141AY,7(2},20(7,10):PC(2Z.10}
1 FORMATI(13,7%.7E20,42{BE1P.4/))
2 FORMAT(1h1,10%.#PLANT PARAMETER VALUES USED TO DETERMINE NICKOLS €
SHART BCUNDSe/1HO,1 ¥, »ERROR CONSTANTS®/(*H ,10%,6E12.4)}
3 FORMAT(IN ,1AX,8PO1Fa,6F10, 471K 17X . 6F1D.47))
IF(PS.EQ.1.) GO TO 35
REAL AN[ WRITE PLANT PARAMETER VALUES.
ADD ONE RFAD AND ONE WRITE CARD FOR EACH VARYING PARAMETER.
REhD(Bpi’ '\G! (th‘n l:i:NG)
WRITEC(E,2¥(6(1),151,NC)
READ(S,1) NP1, (P2l ), 0=1,NP1}
MRITECE,3) (PBLJ),. =1,NP1)
SET UP roNSTANT PARAMETERS OF PLANT,
Pit1)=:.
NP=2
NZ=@
NPC=@
NZC=0
RETURN
35 N=p
ADD ONE DO 52 FOR EACH VARYING PARAMETER.
po 8g l=1.Ahg
po 68 J=1,AMP1
P1¢22=2P2¢ )
UETIEST
CALL BCDE(W,G(1)/P1£2),NP,P1,NPC,PC,NZ,Z,N7C,ZC,PR,PI,N8,P(2,N))
60 PL1.NI=SCRT(PRas®Zasplaa?)
RETURN
END
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SUBRDYTINE BODE (W, G,NP, P, NPC,PC,NZ,2,N2C,20,6R, 61,08, 4}
SUBROUTINE EVALUATES RATIONAL FUNCTION AT JW.
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FOTEZAQR
FOLE. 883

POLES=P(I), ZEROS=Z{[), COMPLEX POLES=7ETA.OMEGA=PC U1, 1), PC(2, 1)PODE P10

COMPLEY ZERNS=ZETA.OMEGAZN(L,1),20(2.1), ERROR CONSTANT =G,
DIMENSION Fri},Z(1),Pc(2,18),2¢(2.10)
Pl=3.1415927
UB=8sw2
AwD,

IF(NP.LE.P) GO TO 3

DO 2 I=1i,NP
IFCABSCPII)) . LT.1.F=18} 6O T0 1
DB=DB°P(!)HiZI(Hﬂo9¢P(1)¢°2)
ABA-ATAN(H/PL]))

60 10 2

DBapB/Hoa2

hopa=R1s2,

CONTINLE

IFtNZ2.LE.pa} GO TO &

DO 5 I=1,N2 ’
IFCABS(ZCI)),LT.1.¢w1@) GO TO 4
DB=DBea(Hes2+2([)oan)/Z([)uaD
ABA+ATANCM/Z2¢] )}

GO T0 5 \
DBzDBsWen?

ABA+PI/2,

CONTINUE

IF(NPC.LE.C) GO TO 9

DO 8 1=1,wnPC
DB:DB*PC(ZJIJ'*4I((FC(2:I)GUE'H.'210'2+4.O(Pﬂ(2.I’lPCtl-]\oH)oczi
ABA~ATAN{2,2PC( s 1YaPCL2, 1) el/(PCLo. 1 Ye0 o nnn))
IF(W.LE.PCt2,1}Y G0 To &
IF(PCLL.1).LT.0.) 50 TO 7

Asp=Pl

G0 TO &

ABpSP]

CONTINLUE

IF{NZC.LE.2) GO TO 12

Do 11 I=i,.N2C
DB=DB¢((ZC(?.])"2-“0'2)l‘2*4-'(20(1-l)'ZC(?nl}'hl'!?!IZC(E.llllﬂ
ABA+ATANC2,w7C(1, 1182002, [)ok/CZCI2, [Yanteyanay)
IF(H.LE.2C(2,13) Go TO 11
IFCZCLL, 1.1 TR:) GO TO 18
AnpeP]

G0 TO 11

AmA=Pl

CONTINUE

B8=250RT(ABS(DB) )

GR=DB=CAS(1)

GI=DBeSIN(A)

DBa2P.¥4L0G10(DR)

RETURN

END

RORF A5
FONEFB-A
EQOPEr@»5
ROTE: D3FE
GORERDAS
EODEv@an
EODEC 49
EONFeaeq
EODFrASS
FONECRER
EODFErass
FORFrO72
EOrEvEe?5
FOLEr@aa
RORErgA%
EQnEcraso
FONEZ D95
EOTFr1pm
EOPE~1g5
BOPEZ110
FORER11S
BOTEr12@
EONE~125
BODEZ 132
EODEr 135S
EFOPE~ 149
F0n€514‘5
EDRFr1sa
E0LFr 155
EOLEZ 160
AOPEX 165
EOREr170
EOLE717S
EOFEvi1aa
BOCE®1A5
BOTEv 190
BODEF195
EOPFC 200
BODEZ 205
BODEr 212
RODEZ215
FODFe229
EOnER225
FODER2230
EONEF23%
EOpEV 242
BORE7 245
BONErZ2s@
FODFv255



225

PLAMT PA-RMETEIR yal,uUeS JSFD Ta DRETERMINE NICHOLS CHART BOUNDS

ERRDR CONRTANTS
lo0N30E20N  JaNplLEe0?

an‘f' 1200 !-nf)ﬂO 5,0000 T.0000 1000000

NICHOL s CHART R "3 AT FREQUSNCYS
BETa{1)= J.ap792 AFTA{2)3 =1.,0000

BOLIND G=ANSF G=wAG G=MAG (DB)

LOwE? ~4,7a9% 3. 1479 29,9603
LAWER <=24,5894 13,7122 P?2.T422
LOWER =&64,2098 6 4894 277711
LOWER =Ra,.2aG4 11,7744 3n,04816
LOWER =44,2a34 35, 1hA2 33,8983
LOWER =1fia,2034 14,0017 in.6300
STAITLITY LInIT FRCUONTERED

NICHOLS CHAaRT RO IS AT TIEQUENCYS
AFTA(1)= =1,n0/ ‘Era(zy= t.0000

AQUND  GeANGLE GeudG  G-MAG{DA)

LAWER -4, 2AY4 27,1149 35,1350
LAWER =24,.209%94 Sd, 3539 34,3790
LOWER =a%,2394 “i ,2THG 32,3145
LAWER =HA4,20%4 29,4260 72,0363
LAWER  =#4,289% ©,1265 15.7642
LNWER «104,2394 15,6438 23,8867
STARTLITY LIMIT EnCINNTERAD

NICHOLS CSHLRT BUUNVDS AT FIEQUFNCYZ
AFTA(1)= =) ,0000 “ETA(2)= «1,0000

AMIND  BeANGLF B=unG G=MAG{DY)
LOWER .u 2R 1,81%0 541965
LOWER =Pa,PR94 ¢.72029 6,8599
LOWER iy g PRYE 2,5757 f.,2180

LAWFR =86 ,2a04 24,8508 Q,1267
LOWER =E4,7R94 2,9941 9.5254
LAWFR =104,2a94 22,9502 Q,3970

STASILITY LIVIT ENCOuUNTERFD

1000
BETA(3)= =1,000n

L1l=ANGLE Li=MAG

=100,0000 31.3223
=120,0000 136:6420
2], 0600 243.6401
=160,0000 31661590
=180,0000 348.9412
«200,0000 338.329]

«1000
RETA(I)= =],.0000

L1=-ANGLE L1=MAB

«100,0000 G56R8.3132
=120,0000 52094172
=150,0000 &10.T7355
=160,0000 250.98AR3
=180,0000 60,9613
=200.0000 )15%.659%

21000
RFTAL3) = 05000

L 1=ANGLE L1=MAG

=10p.0000 18.099%
=120.,0000 21+9197
=140.,0000 25+6294
=160,0000 2R:4561
=180,0000 297927
=200,0000 293554

LL1=MAG (OB}

29,9171
62.6990
47.7278
49,9984
50.8550
50,5848

t.1=MAG (DR}

55.09]18
54,3358
52.2712
47,9931
35,7011}
43,8435

L1=MAG(DB)

25,1533
26,8167
2A. 1748
29,0835
29,4822
29,3537
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2 FORMAT(1M1,30X, OPLANT PARAMETER VALUES USED TO NFETERMINE NICKROLS €
ERART BOUNDSos)

15
20

25
32

35
49

SUBROUTINE PLANTC(PF . MsN-PS}

ROUTIKE GENERATFS WORWALIZED PLANMT VALUES PF FOR S0AS NICHOLS

CHARY BOUND [TERATION.
REAL KF,g@,pnINF
DIMENSION PP¢2,%0).00(12),PR(18),P1010}.2(183,20(7.18),P0(2,12)
DIMENSION xFi58)
FORMATCI3, 7%, 7E10,4/(BELR. 4/ )

FORHATILH ,1BX,ePOLES,6F10.4701H 17X, AF10.4/))
FORMAT(4]2}
FORMAT(1M@,10%, 85558 WP ITERATION FAILED TO CONVERGE 555Se)
FORMAT{1Mp,1 X . SCONRENSATION PARAWETERS®/)
FORMATI(BELR . 4)
FORMAT(iHD,10%,®REAL POLES#,/C1H 18X,F18.4,1)
FORMAT(1MB, 10X, ¢REAL ZERQOSe,/C1H ,10%,F10.4,))
FORMAT(IWD, 10X, sCOMPLEY FOLES(ZETA,OMEGAYS. FI1H L1PX,2F10,4,))
FORMAT(1HA, 18X, *COMPLEY ZERDSCZETA,OMEGA)®, Z/{1H ,10X,2F10.4.))
FORMAT{1HB, 14X, 8H0a,AX, eKFe, B, cK00,BX, aXINFa/)
FORMAT{1W ,1DX,3F10,4.E12.4}
IF{PS.EQ.1,) GO TO 8@
Gﬂﬂio
Giel,
Ko, 0S5
N3=1
READ ANL WRITE PLANT PARAMETER VALUES,
WRITE(6,2)
READ(S:1) NP1,{FDLJ},J s1,NP1)
HRITELE:3) (POC ), yni.NP1)
Pi(L)oRd,
NP=2
Nl=2
NPCep
NICaR
READ FIRST GUESS OF OSCILLATING FREQUFNCY Wg.,
READ(S.7) wp .
REAL AN[ WRITE COMPENSATION DaTa,
READ(S.4} NPL,NIL,NRCL,NZCL
WRITE(6,86)
IF(NPL.EQ.NP) GO TO 20
18=0P -1
READ{S.7) (P1{1),1a1E.,NPL}
po 15 1=I0,NPL
GlaGleP1(]}
WRITECS,8) (P1(1).1al@.NPL)
IF{NZL.-EQG.N2) GO TO 30
18=N2+1
REAB(5,7) (Z2(1),1=1p.,NZL)
DO 25 Isl@.NZL
G1=GI/2(1)
WRITECG6,9) (2(1),1=10,NZL)
IF(NPCL.EC.NPC) GO TO 49
1BaNPC+1
READ(S,7) (PC(1,1),PC(2,1),1=1@,.NPCL)
po 35 I=]a,NPCL
GIeGl®PC(2,1)802
WRITE(&,10) (PCI1,1),PCC2.10.1=[DB,NPCL)
IF{NZCL.EO.NZC) GO TO 5P
185NZC+1
READ{S,7) (ZC(l.I’.ZCt2all.[=ID;N:CL3

226
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p0 435 l=la,NZCL
45 GloGl/s(2CLE, [)eed)
WRITELG6,14) (ZCC1,1),2C(2, 1), T=1B.NZCL)
20 N=@
po 78 J=1.npP1
PLE2)=PAL )
Nol+q
CALL BODE(H.l-IPl(’}.NP-PI,NPC»PC;NZ;Z-NZC.ZCnF’R-PInl‘rHaPF(E-’U’
IF{NS.E0.p) GO TO 7,
ON FIRST CALL SOLVE FOR W@ AND ADJUST GAIN SO LF (JW@)=2=1/2,
A0=1000. '
pd 55 Ks1,28
CALL BODE(Hn,s"/Pi‘z’INPLIPIINPCL.PC.NZL:ZJN?CLlZCJHRpHIrDﬂlAi)
CaLL BODE(-QS‘NG:GH/P].(?)’NPLlPlJNPCL;PC-NZLDZ|NZCL-ZC.FR:FI:UE:&E
2)
ALzA1+3.1415927
A2=A82+38.9415927
WizW@~.05HP0Al /(A1=42)
IFCARS(AL=AA) LE., 1. AND ABS{WB=W1)  LT..05¢Wwp) GO 10 62
AB=zAL ’
85 HWa=H;
HEITE(GaSI
40 XKF{N)=.5/S0RT{(HRs82+Hlue2)
K@=GHoRFIN)/P1(2)
KINFaGl#kR#pP1{2)
IF(N.NE. 1) GO TQ 65
GH=GMsKF (1)
KG=GH
KINFeGleK@epL(2)
KF¢1d=1.
WRITE(G6.12)
45 KAITEC6,13) WO, KFIN).K2,KINF
78 PF(1.N)sSORT(PRM42.PIeaZ}eKf (N}
NEozO
RETUAN
END



1

SUBROUTINE PLANTIPE, . H,N,PS)

ROUTINE GEMERATES NORMALIZED PLANT VALUES PF FOR EEAS NIGHOLS

CHART &0uND ITERATION.
REAL KF.KO,KINF
DIMENSION PF(2,50),0(12),PP(10),P1(108),7¢(18),20(2,10),PC(2,12)
DEIHENSTION P (50}
FORMAT(ISZ, 7%, TELE, 47(BELD.4/))

228

2 FORMAT(LHI, 19X, %PLANT FARAMETER VALUES USED TO DETERMINE NICkOLS C

RV E@~ >N AW

ie
i1
12

13

15
29

25
32

35

4g

)

2HART BOUNDSe/)
FORMAT (1M , 10X, #%P0I Fo.6F10.4/7(1H 17X, 4F 18, 421}
FOANAT (412}
FORMAT(1kﬂaigx;ﬂuﬁﬂﬁjriﬂoﬁv' &g/”g=hF1ge4’
FORMAT{1KHO, 10X, #COMPENSATION PARAMETERS®/)
FORMAT(BE1R . 4)
FORMAT(1HB,.108X%,*REAL POLESs,/(1H $10X,F10t.4,)1)
‘FORMATC1Hp, 9 pX. #RE AL ZERDSe, /(1M £1gX,F1p.4,))
FORMAT(1MG, 10X . 2COMPLEY POLES(ZETA,DMEGAY®, #{1K P10, 2F10.4,))
FORMAT(1H®,1AX . 9COMPLEYX ZEROSC(ZETA,OMEGAD®, /(1M SAPH2F19,4,))
FORMAT(1F5112X;“ARG(‘LH':SK;*"AG(LF)G-SX.H’HIM?X.GKFG.BI.GKQM
28K BHINFay)
FORMAT(1H ,40X,5F17,4.E12.4)
IF(PS.EQ.1.) GO 10 57
GM=1.
Glale
Ng=1
READ ANLC WRITE P aNT PARAMETER VaA_UFS,
MRITE16,2)
READ(S,1) NP1, (PA(S)Y,Ja1,NPY)
HRITEC6,3) (PAry), j=21.NPL)
PLtL)=R.
NPs2
NZ=p
NP(C=0
N2Ca@
READ CSCILLATING FREGUENCY WA AND 48/M@.
READ(5,7} w,al
WRITE(E,9) W,a0
READ AND WRITE rOMPENSATION DaATA.
READ(S,4) NPLLNZL.NPCL,NZCL
HRITE(6.,6}
IF(NPL.ER.AP)Y GO TD 2g
[@aMP+1
READ(S,7) (P1C1).T=12,NPL)
DO 15 I=[@,NPL
GI=GleP1¢I)
WRITE(&,8) ¢(P1(1),I2]10,NPL)
IF¢NZLLEQ.NZY GO 10 3p
[daNZ+1
READ(S:7) (Z(I},1=1P,NZL)
Do 25 I=Ig@,NZL
Gl=Giszt)
WRITELG649) (ZEI3,1=1C.NZL)
IF(NFCL.EG.NPC) GO TO 49
[@=NPC+t
READ(S, 7} (PC{1-13.PC(2, 1), 1=1p.NPCL)
DO 35 l=19,NPCL
Gl=GlePCt2,[)e02
HRITE(6,10) (PCC1,11,PCC2,1),1i=10,NPCL)
[F(NZCL.EQ.NZC) GO TO 5@
18=NZ2C,1



Qa

45

65

70

1

2

229

READES,7) {70(1.1Y.7CC2,8), =10, NECLD
pa 45 1=1B.NZCL
GRaGirsLZCt2,1)un2)
WRITELG,11) (ZC(1,1),208(2,1),I=1@,NZCL)
MNe
00975 J=1:hpP1
PR¢2)=PRCY)
NeNey
CALL BODE‘H:i-/Pl‘?,-NP:Pi:NPCnPCoNZvZuN?CpZC:pRpPI-DB’FF(Q;h))
IFI{NS.EQ.8) GO TO 70
ON FIRST CALL SOLVE FDR PHI AND ADJUST GAIN s0
LF(JHE)=--5°EXP1PH!)/t&g/Mﬂ¢EXP(PHI)).
CALL BUDE(N.GM/PI(?)aNPLpP1»NPCLaPC.NZL-?.NZCL.ZE-HR.HI,DB.hL)
PHI@=PHICAL ,AB)
GLOE.5/S0RTARneZ24D o205 (PHIR 1, )
KF(N)=GLO/SART{HRew2+H]®#a2d)
K22GHeRF (M) /P1 (2}
kINFaGlop@epl(2}
IF¢N-NE.1) 60 TO 65
GM=GHeKF (1)
k@=GH
KINFsGleKRAep1(2)
KF{il=1.
HWRITE(6,12)
PHIA=PHIRa180,/3,1415927
AL=AL®182./73.1415927
WRITE(6,13) AL.GLO,PHIC.KF(N)},K®,KINF
PF{1,N)=SGRT(PRo22.,PIee2)}uKF(N)
nS=0
RETURN
END
FUNCTION PHI(AL.AD)
FUNCTION SOLVES fFQ. 6,11 FOR PHI(RAD}, GIVEN
ALSARGEILA{JINB)IYCRAD) AND AP=AG/M@ BY SECANT METHOD,
FORMAT{1Hg,qpgX,®FUNCTION PHI FAILED TO CONVERGF Pp=e,F32.4,
os P1=6,E12,4,8 F1z20,E12.4./)
Pl=4.,2aTAN{1.)}
PO=1.5¢{AL+P][}
Pi=1:55¢ (AL+PI}
FO=PA=ATAN(SIN(POY /CACLCOSCPEYIY=AL =PI
pd 2 1=1.25
FlzP1=ATAN(SINIP1} /¢ A0+COS(P1))})=AL =PI
PHIzP1«Fie{(P1-Ppd/stF1-Fg))
IP(ABS(F].)‘LED .ﬁl.ANDoABS(Pl"PU,-LE. 001) RETURN
FB=F1
P@=FP1
PasPHI
WRITE(S6,1) PO,P1:F
5TOP
END



